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AbstractAbstractAbstractAbstract    
 

A hurdle for practical implementation of any multivariate Archimedean copula was the absence of an efficient method 

for generating them. The most frequently used approach named conditional distribution one, involves differentiation 

step for each dimension of the problem. For this reason, it is not feasible in higher dimension. Marshall and Olkin 

proposed an alternative method, which is computationally more straightforward than the conditional distribution 

approach. We present the tools necessary for understand it and use it. We introduce the Laplace Transform and its role 

in the generation of multivariate Archimedean copulas. In order to cover the gap between the theory and its practical 

implementation VBA code and R one are provided.‡ 

 

 

    

    

    

 
The prices do not follow models. 

We invent models to describe prices. 

 

Glyn Holton – www.contingencyanalysis.com 

 

 

 

 

 

                                                 
† BICA Coop. E.M.Ltda. 25 de Mayo 1774 – Santo tomé –SANTA FE- Argentina - E-mail: Mario.Melchiori@gmail.com  
The opinions expressed in this paper are those of the author and do not necessarily reflect views shared by BICA Coop. E.M.Ltda. or its staff. 
 
‡ The codes are available from the author on request. 
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IntroductionIntroductionIntroductionIntroduction    

 

A hurdle for practical implementation of any multivariate Archimedean copula was the absence of an efficient method 

for generating them. The most frequently used approach named conditional distribution one, involves differentiation 

step for each dimension of the problem. For this reason, it is not feasible in higher dimension. Marshall and Olkin 

proposed an alternative method, which is computationally more straightforward than the conditional distribution 

approach. A disadvantage is that it requires the generation of an additional variable. For bivariate applications, this 

means generating 50% more uniform random variables, but for higher dimension that drawback is negligible. 

 

We describe now the algorithm to generate multivariate Archimedean copula. The d-dimensional Archimedean copulas 

may be written as: 

 

( ) ( ) ( )( )1
1 1,..., ... ,d dC u u u uφ φ−= + +  

 

Where φ  is a decreasing function known as the generator of the copula and 1φ− denotes the inverse of the generator 

(Frees and Valdez; McNeil et al.). In addition, 1φ− is equal to the inverse of the Laplace transformLaplace transformLaplace transformLaplace transform of a distribution 

function G on +
� satisfying ( )0 0G = , the following algorithm can be used for simulating from the copula: 

 

Algorithm 1:Algorithm 1:Algorithm 1:Algorithm 1:    
 

1. Simulate d independent uniform variable    1,...,iu for i d=  

2. Simulate a variable Y  with distribution function G  such that the Laplace transformLaplace transformLaplace transformLaplace transform of G  is the inverse of the 

generator. 

3. Define 
( )ln

    1,...,i
i

u
s for i d

Y

−
= =  

4. Define ( )1     1,...,i iX s for i dφ−= =  

 

Then 1,... dX X  have Archimedean copula dependence structure. 

 

 

 

 

Table Table Table Table IIII::::  Some generators for Archimedean copulas, their inverses and their Laplace transforms. Source: Marshall and Olkin (1988). 

 

 

Though the density of a stableα − distribution’s closed form is not known Nolan proposed the following simulation 

algorithm for generating random variables stableα − distributed: 

 

    

NameNameNameName    Clayton Gumbel Frank 

    

GeneratorGeneratorGeneratorGenerator    
( ) ( )1t t θφ −= −  ( ) ( )lnt t θφ = −  ( )

1
ln

1

te
t t

e

θ

θ
φ

−

−
−

= −
−

 

Inverse Inverse Inverse Inverse 

GeneratorGeneratorGeneratorGenerator    
( ) ( )

1
1 1s s θφ −− = +

 
( )

1

1
s

s e

θ

φ

  −  −  =  

( ) (1 1
ln 1 1ss e eφ
θ

− − − = − − − 
 

ParameterParameterParameterParameter    0θ >  1θ ≥  { }/ 0θ ∈ �  

YYYY----DistributionDistributionDistributionDistribution    ( )1
,1Gamma
θ

 

( ), , ,Stable α β γ δ  

( )( )1
, 1, cos , 0

2

θπ
α β γ δ

θ θ
= = = =

 

( )

+Logarithmic series on 

with 1 e θα −= −

�

 

Density of YDensity of YDensity of YDensity of Y    ( )
( )11

1
ye y

θ

θ

θ

−
−

Γ
 

(No closed form is known) [ ]
( )

1

ln 1

k

Y k
k

α

α

−
Ρ = =

−
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Algorithm 2:Algorithm 2:Algorithm 2:Algorithm 2: 

1. Simulate an uniform variable ( ),2 2U
π π

Θ −∼  

2. Simulate an exponentially distributed variable W with mean 1 independently of Θ . 

3. Set ( )( )0 arctan tan /2 /θ β πα α= . 

4. Compute ( ), ,1, 0Z St α β∼

( )

( )

( )

( )( )
( )1

sin cos 1                        10 0
1/cos cos0  

cos2 2 2tan ln                               =1

2

Z
W

W
Z

α

α
α θ αθ α α

α
αθ

π

β β αππ π β

−

 + Θ + − Θ ≠ =   Θ

  Θ   = + Θ Θ −    + Θ    

 

5. Compute ( ), , ,X St α β γ δ∼ : 

 

( )( )
                                      1

2
ln                 1

X Z

X Z

γ δ α

γ δ β γ γ α
π

= + ≠

= + + =
 

     

 

Below, we use Kemp’s second accelerated generator of Logarithmic Distribution random variables from Luc Devroye’s 

book titled “Non-Uniform Random Variate Generation” chapter 10, page 548, freely available on 

http://cgm.cs.mcgill.ca/~luc/rnbookindex.html. 

 

Algorithm 3:Algorithm 3:Algorithm 3:Algorithm 3: 
 

Set ( )ln 1c α= −  

Simulate an uniform variable [ ]0,1V . 

IFIFIFIF V α≥  then set 1X =  

ELSEELSEELSEELSE    

Simulate an uniform variable [ ]0,1U . 

Set 1 cUq e= −  

CASECASECASECASE    

2 :V q≤  set 
( )

( )
ln

int 1
ln

V
X

q

 
= + 

  
. 

2 :q V q< ≤  set 1X = . 

:V q>  set 2X = . 

 

X  is Logarithmic Series distributed. 

 

No other algorithm is necessary because the most of software have a built-in function that generates random variables 

Gamma distributed, such as GammaInv GammaInv GammaInv GammaInv function on Excel and rgammargammargammargamma on R. 

 

Laplace TransformLaplace TransformLaplace TransformLaplace Transform    

 

The Laplace TransformLaplace TransformLaplace TransformLaplace Transform of a function ( )f t  is denoted by L ( )[ ]f t and defined by: 

 

L ( )[ ] ( )

0

stf t f t e dt

∞
−= ∫  

 

The Laplace transformLaplace transformLaplace transformLaplace transform L ( )[ ]f t of ( )f t is, therefore, a function of the variable s  and is commonly denoted by ( )f s .  

The inverse Laplace transform is written as: 
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L ( )[ ] ( )1 f s f t− = . 

 

 

Table of Laplace TransformLaplace TransformLaplace TransformLaplace Transform pairs, which are of interest for our work: 

 

FunctionFunctionFunctionFunction    

( )f t     

Laplace TransformLaplace TransformLaplace TransformLaplace Transform    

0
( ) ( ) stf s f t e dt

∞ −= ∫     

1     for t  > 0  
1

s
 

gte  
1
   for s g

s g
>

−
 

( )
( )11

1
te t

θ

θ

θ

−
−

Γ
 

( )
1

1   for 0s θ θ−+ >  

[ ]
( )

1

ln 1

t

T t
t

α

α

−
Ρ = =

−
 

( )1
ln 1 1se e θ
θ

− − − − −   

( )for 1 e θα −= −  

 (No closed form is known) 

1

  for 1
s

e

θ

θ

  −    ≥  

Table Table Table Table IIIIIIII    ----    Laplace Transform pairs    

 

From an economic point of view we immediately recognize the Laplace transformLaplace transformLaplace transformLaplace transform as the present value of a stream of 

returns ( )f t at the interest rate s . The present value of cash flows of $1, ( ) 1f t = , paid annually and perpetually at 

the continuous interest rate s  is L ( )[ ]
0

1
1 stf s e dt

s

∞
−= =∫ . On the other hand, the present discounted value at the 

continuous interest rate s  of a cash flow growing at the rate g , ( ) gtf t e= , is L ( )[ ]
0

1gt stf s e e dt
s g

∞
−= =

−∫ . If 

( )f t  is   continuous and differentiable at all 0t ≥ , then it is possible to recover ( )f t  from L ( )[ ]f s through the 

inverse transformation: 

L ( )[ ] ( )1 1
lim

2

a ib
st

b
a ib

f s f t e
iπ

+−
→∞

−
= = ∫ L ( )[ ] ,f s ds a α≥ . 

 

This has the economic meaning that if we know the present discounted value of a stream of returns at every interest 

rate, we can recover the whole pattern of the stream of returns. 

 

 

Experiment I 
 

We conduct an experiment for seeing practically in what manner, by knowing the Laplace transform of a function, we 

can recover it. We will do it here, but you can reproduce it on your own computer. For doing this, we need an approach 

that implements numerically the inverse transformation L ( )[ ]1 f s−
. We will use the Euler1 method. Readers interested 

in deepening this subject should consult the following link: 

 

 

http://www.columbia.edu/~ww2040/Laplacehttp://www.columbia.edu/~ww2040/Laplacehttp://www.columbia.edu/~ww2040/Laplacehttp://www.columbia.edu/~ww2040/LaplaceInversionJoC95.pdfInversionJoC95.pdfInversionJoC95.pdfInversionJoC95.pdf    

 

                                                 
1
 In Appendix A, we provide a VBA code that implements numerically the inverse Laplace transform by employing the Euler method.  The Laplace transform is specified by 

the variable Fs in the function Rf. Inserting different transforms here can solve different problems. 
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The experiment consists of computing the flow of returns by knowing its net present value using the inverse Laplace 

transform. As we already saw, the net present value of a stream of returns that grows to the continuous rate g , 

represented by the function ( ) gtf t e= , discounted to the continuous interest rate s  to be 
1

s g−
. Also 

1

s g−
is the 

Laplace Transform of the function ( ) gtf t e= as well. So that, we can calculate the stream of returns that grows at 

rate g 2 discounted to the continuous interest rate s  using gte  or employing the Inverse Laplace Transform of 

1

s g−
. 

 

In the VBA alluded to the Laplace transform 
1

s g−
, is specified by the variable FsFsFsFs in the function Rf Rf Rf Rf, in complex 

notation. The VBA should look as follow: 
 

Function Rf(ByVal X, ByVal Y) As Double 
s = imsum(X, improduct("i", Y)) 
g=0.02 
Fs = imdiv(1, (imsum(s, - g))) 
Rfs = imreal(Fs) 
Rf = Rfs 
End Function 

 

 

So in Excel’s language gte  is represented as =Exp(0.02*A1)=Exp(0.02*A1)=Exp(0.02*A1)=Exp(0.02*A1) for 1t = ,=Exp(0.02*A2)=Exp(0.02*A2)=Exp(0.02*A2)=Exp(0.02*A2) for 2t =  and so on. On the 

other hand, the Inverse Laplace Transform of 
1

s g−
 as =InverseLaplace(A1)=InverseLaplace(A1)=InverseLaplace(A1)=InverseLaplace(A1)  for 1t = . =InverseLaplace(A2)=InverseLaplace(A2)=InverseLaplace(A2)=InverseLaplace(A2)  for 

2t =  and so on. 

 

 

 
 

 

                                                 
2
 In this experiment the stream of returns grows to the continuous rate of the 0.02 ( )0.02g =  
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Experiment II 
    

The previous experiment was a warm-up for this one, which has more relation with our research. The point 2 of the 

Algorithm 1Algorithm 1Algorithm 1Algorithm 1 requires simulating a variable Y  with distribution function G  such that the Laplace transformLaplace transformLaplace transformLaplace transform of G  is the 

inverse of the generator.  In Table I, we can see in the Clayton case that the probability density function G  is 

( )1
,1Gamma
θ

. So that, the inverse Laplace transform Laplace transform Laplace transform Laplace transform of the    inverse generator    ( )
1

1 s θ
−+     for 0θ > 3333    equals to the 

Probability Density Function of a ( )1
,1Gamma
θ

distribution. For doing this in the VBA alluded to, the Laplace Laplace Laplace Laplace 

transformtransformtransformtransform ( )
1

1 s θ
−+ , is specified by the variable FsFsFsFs in the function Rf Rf Rf Rf, in complex notation. The VBA should look as 

follow: 

Function Rf(ByVal X, ByVal Y) As Double 
s = imsum(X, improduct("i", Y)) 
theta= 1.84 
Fs = impower(imsum(1, s), -1 / theta) 
Rfs = imreal(Fs) 
Rf = Rfs 
End Function 

So that the Laplace transform ( )
1

1 s θ
−+ in Excel’s language is represented by the function ====InverseLaplace(A1)InverseLaplace(A1)InverseLaplace(A1)InverseLaplace(A1)  for 

1t = , ====InverseLaplace(A2)InverseLaplace(A2)InverseLaplace(A2)InverseLaplace(A2)  for  2t =  and so on. Also, the Probability Density Function of a 

( )1
,1Gamma
θ

distribution equals to 

( )
( )11

1
te t

θ

θ

θ

−
−

Γ
 or in Excel’s language =1/(Exp(Gamma.Ln(1/1.84)))*Exp(=1/(Exp(Gamma.Ln(1/1.84)))*Exp(=1/(Exp(Gamma.Ln(1/1.84)))*Exp(=1/(Exp(Gamma.Ln(1/1.84)))*Exp(----

A1)*A1^((1A1)*A1^((1A1)*A1^((1A1)*A1^((1----1.84)/1.84) or =GammaDist(A1,11.84)/1.84) or =GammaDist(A1,11.84)/1.84) or =GammaDist(A1,11.84)/1.84) or =GammaDist(A1,1/1.84,1,0)/1.84,1,0)/1.84,1,0)/1.84,1,0) for 1t =  and, =1/(Exp(Gamma.Ln(1/1.84)))*Exp(=1/(Exp(Gamma.Ln(1/1.84)))*Exp(=1/(Exp(Gamma.Ln(1/1.84)))*Exp(=1/(Exp(Gamma.Ln(1/1.84)))*Exp(----

A2)*A2^((1A2)*A2^((1A2)*A2^((1A2)*A2^((1----1.84)/1.84) or =GammaDist(A2,1/1.84,1,0) 1.84)/1.84) or =GammaDist(A2,1/1.84,1,0) 1.84)/1.84) or =GammaDist(A2,1/1.84,1,0) 1.84)/1.84) or =GammaDist(A2,1/1.84,1,0)  for 2t =  and so on.  

 

 
 

 

                                                 
3
 In this example the variable θ  equal to 1.84. 
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We invite to readers to conduct a third experiment that computes the probability density function in the Frank case 

using both the function [ ]
( )

1

ln 1

k

Y k
k

α

α

−
Ρ = =

−
 and the inverse Laplace TransformLaplace TransformLaplace TransformLaplace Transform of 

( )1
ln 1 1se e θ
θ

− − − − −  ( )for 1 e θα −= − . 

    

ConclusionsConclusionsConclusionsConclusions    

    
There is clear evidence that equity returns have unconditional fat tails, to wit, the extreme events are more probable 

than anticipated by normal distribution, not only in marginal but also in higher dimensions. This is important both for 

market risk models as credit risk one, where equity returns are used as a proxy for asset returns that follow a 

multivariate normal distribution, and, therefore, default times have a multivariate normal dependence structure as well. 

Other than normal distribution should be used both in marginal as joint distributions. To overcome these pitfalls, the 

concept of copula emerges. A hurdle for practical implementation of any multivariate Archimedean copula was the 

absence of an efficient method for generating them. The most frequently used approach named conditional distribution 

one, involves differentiation step for each dimension of the problem. For this reason, it is not feasible in higher 

dimension. Marshall and Olkin proposed an alternative method, which is computationally more straightforward than the 

conditional distribution approach. We present the tools necessary for understand it and use it. We introduce the Laplace 

Transform and its role in the generation of multivariate Archimedean copulas. In order to cover the gap between the 

theory and its practical implementation VBA code and R one are provided. 
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Appendix AAppendix AAppendix AAppendix A    

Abate, Joseph and Whitt Ward 1995 Numerical Inversion of Laplace Transforms of Probability 
Distributions. ORSA Journal on Computing, vol. 7, 1995, pp. 36. 

(http://www.columbia.edu/~ww2040/LaplaceInversionJoC95.pdf) 

Function InverseLaplace(t As Double) As Double 

 

Const Pi = 3.14159265358979 

Dim SU(13), C(12) 

m = 11 

 

For n = 0 To m 

    C(n + 1) = Application.WorksheetFunction.Combin(m, n) 

Next 

 

A = 18.4 

Ntr = 15 

u = Exp(A / 2) / t 

X = A / (2 * t) 

h = Pi / t 

 

Sum = Rf(X, 0) / 2 

    For n = 1 To Ntr 

    Y = n * h 

    Sum = Sum + (-1) ^ n * Rf(X, Y) 

    Next 

     

SU(1) = Sum 

    For k = 1 To 12 

    n = Ntr + k 

    Y = n * h 

    SU(k + 1) = SU(k) + (-1) ^ n * Rf(X, Y) 

    Next 

 

Avgsu = 0 

Avgsu1 = 0 

    For j = 1 To 12 

    Avgsu = Avgsu + C(j) * SU(j) 

    Avgsu1 = Avgsu1 + C(j) * SU(j + 1) 

    Next 

Fun = u * Avgsu / 2048 

Fun1 = u * Avgsu1 / 2048 

 

InverseLaplace = Fun1 

errt = Abs(Fun - Fun1) / 2 

 

End Function 
 

Function Rf(ByVal X, ByVal Y) As Double 

s = imsum(X, improduct("i", Y)) 

Fs = imdiv(1, (imsum(s, -0.02))) 

Rfs = imreal(Fs) 

Rf = Rfs 

End Function

 


