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Models of credit risks have long existed in the insur-
ance and corporate finance literature. Those mod-
els concentrate on default rates, credit ratings and

credit risk premiums. These traditional models focus on
diversification and assume that since the credit risk for the
individual assets in the portfolio are unique; these can be
diversified away in a large portfolio. Models of this kind are
along the line of portfolio theory that employs the capital
asset pricing model (CAPM). In the CAPM, only the sys-
tematic risk or market risk matters. For single, isolated cred-
its, the models calculate risk premiums as mark-ups onto the
risk-free rate. Since the default risk is not diversified away, a
similar model to the CAPM called the capital market line is
used to compute the correct markup for bearing the default
risk. The Sharpe ratio is commonly used to measure how
credit risks are priced

Modern credit derivative models can be partitioned into
two groups known as structural models and reduced form
models. Structural models were pioneered by Black and
Scholes and Merton. The basic idea, common to all struc-
tural-type models, is that a company defaults on its debt if
the value of the assets of the company falls below a certain
default point. For this reason, these models are also known
as firm-value models. In these models it has been demon-
strated that default can be modelled as an option and, as a
result, researchers were able to apply the same principles
used for option pricing to the valuation of risky corporate
securities. The application of option pricing avoids the use of
risk premium and tries to use other marketable securities to
price the option. The use of option pricing theory set forth
by Black-Scholes-Merton (BSM) provides significant
improvement over traditional methods for valuing default
risky bonds. It also offers much more accurate prices, but
provides information about how to hedge out the default
risk, which was not obtainable from traditional methods.
Subsequent to the work of BSM, there have been many
extensions. 

The second group of credit models, known as reduced
form models, are more recent. These models, most notably
the Jarrow-Tunbull and Duffie and Singleton models, do
not look inside the firm. Instead, they model directly the
likelihood of default or downgrade. Not only is the current
probability of default modelled, some researchers attempt to

model a ‘forward curve’ of default probabilities. This can be
used to price instruments of varying maturities. Modelling a
probability has the effect of making default a surprise – the
default event is a random event that can suddenly occur at
any time. All we know is its probability. 

There is no standard model for credit. Part of the reason
why this is so is that each of the models has its own set of
advantages and disadvantages, making the choice of which
to use depend heavily on what the model is to be used for. It
is ultimately down to what suits the user’s requirements best.

Pricing credit derivatives and credit risk in general, is
quite similar in technique to pricing traditional derivatives,
such as interest rate swaps or stock options. This paper intro-
duces the concept behind two general frameworks for valu-
ing default risk claims and extending these models to valua-
tion of credit derivatives, in particular default swap or credit
default swap contracts (CDS). The models or approaches
investigated are the structural and reduced form models. We
will examine the suitability of these models to the pricing of
credit protection in rapidly growing credit default swap mar-
ket by identifying some of the key advantages and drawback. 

The following are some of the key questions that market
practitioners must address. How is credit default swap priced?
Which model is most appropriate model to use for pricing
implementations? In a subsequent paper the authors use
reduced or intensity based model to implement pricing
default swaps using corporate bond yields and solve for the
default swap premium they imply. In practice, we see that
when comparing the implied credit default swap premium to
actual market CDS prices, implied premiums tend to be
much higher than the CDS prices quoted in the market. What
accounts for these differences? The differences are related to
measures of Treasury specialness, corporate bond illiquidity,
and coupon rates of the underlying bonds, suggesting the
presence of important tax-related and liquidity components
in corporate spreads. Also, both credit derivatives and equity
markets tend to lead the corporate bond market. 

In this paper, we introduce the concept behind credit risk
models.

Structural models

Structural credit pricing models are based on modelling the
stochastic evolution of the balance sheet of the issuer, with
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default when the issuer is unable or unwilling to meet its
obligations. In this model, the asset value of the firm is
assumed to follow a diffusion process and default is modelled
as the first time the firm’s value hits a pre-specified bound-
ary. Because of the continuity of the process used, the time
of default is a predictable stopping time. The models of Mer-
ton (1974), Black and Cox (1976), Geske (1977), Longstaff
and Schwartz (1993) and Das (1995) are representatives of
this approach. 

Reduced-form models/intensity models

In the intensity models the time of default is modelled
directly as the time of the first jump of a Poisson process with
random intensity. The first models of this type were devel-
oped by Jarrow and Thurnbull (1995), Madal and Unal
(1998), and Duffie and Singleton (1997). Jarrow and Turn-
bull assume default is driven by a Poisson process with con-
stant intensity and known payoff at default. The Duffie and
Singleton (1997) model assumes the payoff when default
occurs as cash, but denoted as a fraction (1-q) of the value of
defaultable security just before default. This model was
applied to a variety of problems, including swap credit risk,
two-sided credit risk and pricing credit default swap, binary
credit default swap and credit default swap option.

Structural credit models

The basic of structural approach, which goes back to
Black and Scholes (1973) and Merton (1974), is that corpo-
rate liabilities are contingent claims on the asset of a firm.
The market value of the firm is the fundamental source of
uncertainty deriving credit risk. 

Basic assumptions

Consider a fix finite forward or horizon date T* > 0, and we
suppose that the underlying probability space (Ω, F, P),
endowed with some (reference) filtration F= (ft)0≤t≥T*, is suf-
ficiently rich to support the following objects. 

● The short-term interest rate process r, and thus also a
default-free term structure model. 
● The firms value process V, which is interpreted as a model
for the total value of the firm’s assets. 
● There is a barrier process v, which can be used in the spec-
ification of the default time τ.
● The promised contingent claim X represents the firm’s lia-
bilities to be redeemed at maturity date T≤T*.
● The process Ct, which models the promised dividends, ie
the liabilities stream that is redeemed continuously or dis-
cretely over time to the holder of a defaultable claim. 
● The recovery claim X

–
represents the recovery pay-off

received at the time T, if default occurs prior to or at the
maturity date of the claim X.
● The recovery process Z, specifies the recovery pay-off at the
time of default, if it occurs prior to or at the maturity date T.

Defaultable claims

Technical assumptions
The processes V, Z, C and v are progressively measurable

with respect to the filtration F, and that the random variables
X and X

–
are FT – measurable. In addition, C is assumed to be

a process of finite variation, with C = 0. It is assumed that all
random objects introduced above satisfy suitable integrabil-
ity conditions. 

Probabilities 
The probability P is assumed to represent the real-world (or
statistical) probability, as opposed to the martingale measure
(also known as the risk-neutral probability). The latter prob-
ability is denoted by P*. 

Default time/stopping times
In order to be able to model the arrival risk of a credit event,
one needs to model a known, random point in time t∈R+.
This can also be extended to the possible set of realisations of
τ to include ∞ for events that may never occur. Thus, τ is a
random variable with values in R+∪{∞} But one may need to
link τ to the way information is revealed in the filtration
(Ft)t≥0. In particular, if τ is the time of some event, we want
that at the time of default event it is known that this event
has occurred. Formally, this shows that at every time t we
know if τ has already occurred or not: 

(2.1)

This property defines the random time τ as a stopping
time. Equation 2.1 says that we can observe the event at the
time it occurs. But it does not require that the event comes as
a surprise. The value of the stopping time may be known a
long time before time t = τ. The maximum and minimum of
a set of stopping times is again a stopping time, and the sum
of the two stopping times. In order to represent stopping
time with a stochastic process, we define its indicator process
that jumps from zero to one at the stopping time: 

(2.2)

In particular, depending on the model and the purpose
we may have that τ={T} – meaning that the default event
may only take place at the maturity of the company’s out-
standing debt as in the classical Merton model, or that
τ={T1, T2,....TN} if default can only happen (or rather, can be
declared) at some discrete time instants, such as the coupon
payment dates. 

For default risk modelling, default indicator functions can
be used (the indicator function of the default event) and the
survival indicator functions (one minus the default indicator
function). Another concept in conjunction with the default
indicator is also the idea of predictable stopping time τ. The
indicator process of a predictable stopping time is a pre-
dictable process. A predictable stopping time has an
announcing sequence of stopping times. τ1≤t2≤... with 

This means that there is a sequence of early warning sig-
nals τn that occurs before τ and that announce the pre-
dictable stopping time. An example of predictable stopping
time is the first hitting time of a continuous stochastic
process X(t), ie the first time when X(t) hits a barrier, K– . If

τ τ τ τ ω τ ωn
n

n< = ∈ ( )>{ }
→∞

and for alllim Ω 0

N t II tτ τ( ) : { }= ≤

∀ ≥t 0{ }τ ≤ ∈t Ft
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the process starts above the barrier X(t)>K– , then one possi-
ble announcing is given by the following times:

The announcing sequence gives the times when X(t) hits
barriers that are closer to the final barrier K– . 

Recovery rules
If default does not occur before or at time T, the promised
claim X is paid in full at time T. Otherwise, depending on the
market convention, either; (1) the amount X– is paid at matu-
rity date T; or (2) the amount Zτ is paid at time τ. In this
paper we assume that the recovery payment of X– is paid in
the event of default at maturity, i.e. on the event τ=T. 

Risk neutral valuation formula
We consider a financial market model that is arbitrage free, in
the sense that there exists a martingale measure (risk neutral
probability) P*, meaning that the price process of any trad-
able security, which pays no coupon or dividends, becomes
an F-martingale under measure P*, when discounted by the
saving account B given as:

We introduce the jump process Ht=1τ>T, and we denote
D as the process that models all cash flows received by the
owner of a defaultable claim . Let us denote

The above equation shows the payoff of a defaultable
claim if default does not happen at the maturity of the con-
tract and the event that default takes place before or at the
maturity of the contract. 

The dividend process D of a defaultable contingent claim
(X, C, X–, Z, τ), which settles at time T, equals

D is a process of finite variation, and 

In principal, the promised payoff X could be incorpo-
rated into the promised dividends process C. However, this
would be inconvenient, since in practice the recovery rules
concerning the promised dividends C and the promised
claim X are different, in general. For instance, in the case of
a defaultable coupon bond, it is frequently postulated that,
in case of default, the future coupons are lost, but a strictly
positive fraction of the face value is usually received by the
bondholder. 

Let us denote St as the ex-dividend price of a defaultable
claim. At any time t, the random variable St represents the
current value of all future cash flows associated with a given
defaultable claim. For any date t∈[0, t] the ex-dividend price
of the defaultable claim (X, C, X–, Z, τ) is given as:

It is common to use the above equation, but with the
probability measure P* substituted with Q*. 

Defaultable zero-coupon bond
Assume that C=0, Z=0 and X=L for some positive constant
L>0. Then the value process S represents the arbitrage price
of defaultable zero-coupon bond with face value of L and
recovery at maturity only. In general, the price D(t,T) of
such a bond equals:

The above formula can also be rewritten as follows:

where the random variable δ(T)=X–/L represents the 
recovery rate upon default. It is also natural to assume
between 0% and 100% of the bond’s face value. This can be
written as: 

Alternatively, one can re-express the bond price as follows: 

where 

is the price of a unit default free zero coupon bond and
w(T)=1–δ(T) is the write-down rate upon default. Generally,
the time-t value of a corporate bond depends on the joint
probability distribution of under measure P* of the three-
dimensional random variable (BT, δ(T), τ).

Classical approach

If we consider a firm with a market value V, and let V repre-
sent the present value of future the firm’s cash flows. Let K
represent the value of face value of the firm’s debt and T the
maturity date of these debts. As stated above, let’s define the
default time τ as a discrete random variable given by:

To calculate the probability of default, we make assump-
tions about the distribution of assets at debt maturity under
the probability measure P*. The change of the asset prices
over time follows geometric Brownian motion:

where u is the drift, σ is the volatility parameter and W is a
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Table 1 Payoffs at maturity in the 
classical approach

Assets Bonds Equity

No default VT≥K K VT–K

Default VT<K VT 0



standard Brownian motion. Via Ito’s lemma, the solution of
the above equation can be written as1:

Since Wt is N~(0, T), the default probabilities P(T) are
given by 

where L=K/V0 is the initial leverage ratio and Φ is the stan-
dard normal distribution function. If we assume that the firm
cannot repurchase its shares or issue new debt, the payoffs to
the firms liabilities at debt maturity Τ can be summarized in
Table 1.

If the asset value VT is equal or greater than the face value of
the firm’s debt K, the bondholder will receive the face value
back, while the equity holders will get the difference between
the value of the firm and debt value. In the event the firm value
is below the firm’s debt value, the equity will be worthless and
the debt holders will assume ownership of the firm. 

Summary and conclusions

Credit risk is the distribution of financial losses due to unex-
pected changes in the credit quality of counterparty in a
financial agreement. Examples range from agency down-
grades to failure to service debts to liquidation. Credit risks
exist in virtually all financial transactions. The distribution of
credit losses is complex. At its centre is the probability of
default or the likelihood of failure to honour a financial
agreement. To estimate these probabilities of default, one
needs to specify a model of investor uncertainty, a model of
the available information and its evolution over time, and a
model definition of the default event.

However, default probabilities alone are not sufficient to
price credit sensitive securities. One needs, in addition, a
model for the risk free interest rate, a model of recovery
upon default and a model of the premium investors require
as a compensation for bearing systematic credit risk. 

The credit premium maps actual default probabilities to
the market-implied probabilities that are embedded in mar-
ket prices. To price securities that are sensitive to the credit
risk of multiple issuers and to measure aggregated portfolio
credit risk, we also need to specify a model that links defaults
of several entities2.

There are three main quantitative approaches to analysing
credit. In the structural approach, we take explicit assump-
tions about the dynamics of a firm’s assets, its capital struc-
ture, and its debt and shareholders. A firm defaults if its
assets are insufficient according to some measure. In this sit-
uation, a corporate liability can be characterized as an option

on the firm’s assets. The reduced form approach is silent
about why a firm defaults. Instead, the dynamics of default
are exogenously given through a default rate, or intensity. In
this approach, prices of credit sensitive securities can be cal-
culated as if they were default free using an interest rate that
is the risk-free rate adjusted by the intensity. The incomplete
information approach combines the structural and reduced
form models. While avoiding the difficulties, it picks the best
features of both approaches: the economic and intuitive
appeal of the structural approach and the tractability and
empirical fit of the reduced form approach. 

Abukar Ali is a research partner with YieldCurve.com.
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