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Abstract 
The purpose of this paper is to analyze the risks of synthetic CDO structures and their 
sensitivity to model parameters.  In order to measure these sensitivities, I also introduce 
the latest techniques in the pricing and risk management of synthetic CDOs.  I show how 
to model the conditional and unconditional default distributions of a typical synthetic deal 
using a simple mathematical framework.  Strictly speaking, the findings of this paper are 
only directly applicable to synthetic structures, however; many of the modeling and risk-
management insights discussed apply to structures involving a waterfall.  
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Introduction 
 
The purpose of this paper is to introduce the latest techniques in the pricing and risk 
management of synthetic CDOs and measure the risks and model sensitivities of a typical 
synthetic deal.  Although these techniques are only directly applicable to synthetic 
structures, many of the modeling and risk-management insights discussed in the paper 
apply to structures involving a waterfall. 
 
A synthetic collateralized debt obligation, synthetic CDO, is made up of a portfolio of 
credit default swaps.  The arranger of a synthetic CDO distributes the credit risk of the 
portfolio by creating and selling tranches to investors.  Every tranche has an attachment 
and detachment point that determines the amount of loss, and correspondingly the 
number of defaults, the tranche can absorb.  For example, the first tranche, known as the 
equity tranche, might be responsible for portfolio credit losses between 0% and 3%, the 
next tranche would then be responsible for portfolio losses that exceed 3% up to the size 
of the tranche, and so on.  The least risky tranche of a CDO is known as the senior 
tranche, or super-senior tranche.  Tranches between the equity tranche and the most 
senior tranche are known as mezzanine tranches.  
 
The challenge in pricing a synthetic CDO lies in the difficult task of formulating a model 
for the joint default behavior of the underlying reference assets.  Understanding and 
modeling the joint default dynamics of the reference assets are important in order to 
compute the expected losses for each tranche.  The expected losses, in turn, determine the 
fair spread of the tranche.  In fact, once the joint default distribution of the reference 
assets has been specified, we can price any tranche that references these assets. 
 
In the following section, I will present a simple approach to computing the joint default 
distribution of a reference portfolio.  The approach is based on a recursive procedure and 
requires no Monte Carlo simulations.  I will also compare the results of this recursive 
approach with the results obtained using a Monte Carlo procedure that simulates the 
default times of the reference assets and the corresponding losses in the portfolio.  The 
Monte Carlo approach is computationally time-consuming as it requires a large number 
of simulations in order to produce enough defaults that can impact the most senior 
tranches of a CDO.  
 
Computing the Distribution of Default Losses 
 
Pricing a synthetic CDO boils down to computing the joint distribution of defaults of the 
reference portfolio.  Computing the default distribution, in turn, depends crucially on the 
default probabilities of the reference credits and the pairwise correlation between every 
pair of credits.  The correlation among the assets will drive the joint default behavior of 
the assets.  The model we use here is a one-factor model whereby the defaults are driven 
by one factor which we take to represent a common economic driver of credit events.  
Default losses are then calculated conditional on the state of this economic factor.  This 
procedure will result in computing the conditional default distribution.  The next step is 
to integrate the conditional default distribution over the common factor to arrive at the 
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unconditional distribution of default losses.  This modeling framework has an appealing 
and easy interpretation.  Conditional on the state of the common economic factor, credits 
will default when their asset values fall below a pre-specified threshold.  This default 
threshold usually represents the level of debt of a company.  If we further assume that the 
variables driving the returns process follow a normal distribution, then this modeling 
framework is also known as the Gaussian copula.  
 
We assume that the reference portfolio contains N credits and each credit is described by 
its notional amount, probability of default, and recovery rate.  For any credit “i” we then 
have a notional A(i), a default probability p(i), and a recovery rate r(i).  The return 
process of each credit is driven by a common factor M, and a noise factor ε(i) that is 
specific to the i-th credit according to the following equation: 
 
Z(i) = β(i).M + ε(i).√(1 – β(i)2)              (1) 
 
Where the Z(i) represents the returns of credit i.  The market factor M, and the 
idiosyncratic factor ε(i) are independent standard normals with zero means and unit 
variances.  The asset returns, Z(i), follow a standard normal distribution as well.  Within 
this specification of the returns dynamics, the correlation between any two credits, i & j, 
is simply given by the product of β(i) and β(j), where β(i) and β(j) are taken to represent 
the betas of credits i and j respectively.  That is, they represent the sensitivities of credits i 
and j to changes in the common factor. 
 
ρ(Z(i), Z(j)) = β(i).β(j)               (2) 
 
Conditional on the realizations of the common factor, defaults are only driven by the 
noise factors ε(i) and are thus independent.  A credit, i, is assumed to default if its asset 
return, Z(i), falls below a pre-specified level or default threshold given by the Ф -1( p (i)) 
where Ф -1 denotes the inverse of the cumulative standard normal distribution.  If we 
denote the default threshold of credit i by D(i), then a credit i defaults when: 
 
Z(i) < D(i), where D(i) = Ф -1( p (i))              (3) 

 
Equivalently by re-arranging equation (1), default occurs when: 
 
ε(i) < [D(i) – β(i).M] / √(1 – β(i)2)                          (4) 
 
Finally, since ε(i) are standard normals and we assume a flat correlation across all credits, 
the default probability of credit i conditional on the realizations of the common factor M 
is given by: 
 
Prob(Z(i) < D(i) ׀ M) = Ф ([D(i) – M.√p] / √(1 – ρ))                            (5)   
 
This last equation demonstrates that only a single correlation parameter ρ and a single 
common factor M are needed to calculate the joint distribution of default losses. 
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There are two ways to move on from here.  One approach involves a Monte Carlo 
simulation of M and ε(i) in equation (1) to generate realizations of the asset returns Z(i).  
Defaults will then be triggered whenever Z(i) falls below a threshold as described by 
equation (3).  The term structure of default probabilities for each credit can be calibrated 
to market spreads or implied from the credit ratings.  A second approach takes advantage 
of the fact that defaults are independent, conditional on the common market factor.  It 
then uses a recursive method to construct the conditional default distribution.  The details 
of this recursion method are discussed in Gibson (2004), Hull & White (2003), and 
Andersen, Sidenius and Basu (2003) and an alternative approach using generating 
functions is discussed in Mina and Stern (2003).  We can calculate the conditional 
probability that a portfolio of size i will lose exactly k credits by time t with the following 
recursion: 
 
Pi(k, t ׀  M) = Pi-1(k, t׀ M).(1 – P(Z(i) < D(i) ׀ M)) + P i-1(k - 1, t׀ M).P(Z(i) < D(i) ׀ M)          (6)  
 
By starting with a portfolio of size 0 and successively adding credits according to the 
recursion equation we can construct the conditional default distribution.  Finally, by 
weighting the conditional probabilities by the probability distribution of the common 
factor we arrive at the unconditional default distribution.  
 
For the results in this article I use the Monte Carlo and the recursion methods to generate 
the default loss distribution.  The Monte Carlo method, though slower, allows more 
flexibility in modeling the correlation and default parameters.  When I run both models 
using the same correlation and default assumptions, I get the same results. 
 
Pricing Synthetic CDO Tranches     
 
Pricing a CDO tranche is a function of the tranche’s notional, spread, and expected 
default losses.  The expected losses on a tranche can be estimated from the default 
distribution of the reference portfolio.  Thus, for each payment date we need to estimate 
the credit losses sustained by the portfolio and distribute these losses to each tranche 
based on the relative position of the tranche in the capital structure: the protection leg.  
Also, each tranche receives a premium that is a function of the remaining notional 
amount of the tranche on the payment date: the premium leg.  Thus, both the premium leg 
and the protection leg are a function of a common denominator: the portfolio credit losses 
sustained by the payment date. To compute the fair spread on a tranche we need to equate 
its premium leg to its protection leg, which reduces the pricing of a synthetic tranche to 
the more familiar analytics of a single-name default swap.  If we denote the expected loss 
of a tranche at payment date ti by E(Li), then: 
 
Total Expected Losses on the tranche = Σi Di . [E(Li) – E(Li - 1)],          (7) 
Total Expected Premium Payments = s. Σi Di . E(Ni)           (8) 
 
Where Di is the discount factor at payment date i, s is the tranche spread, E(Ni) is the 
tranche expected remaining notional by payment date i,  and the summation is taken over 
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all payment dates.  I should also note that the remaining notional is a function of the 
expected losses on the tranche, which is driven by the portfolio credit losses.  That is: 
 
E(Ni) = N0 - E(Li), where N0 is the original notional of the tranche          (9)  
 
We can then calculate the fair spread of the tranche as: 
 
sfair =    Σi Di . [E(Li) – E(Li - 1)] / Σi Di . E(Ni)          (10) 
 
Once again, the pricing equations show that all one needs to compute the price of any 
synthetic CDO tranche is the default distribution of the reference credits. 
 
Pricing & Risk Management of Synthetic CDO Tranches 
 
To illustrate the results of the modeling approach described above, let us work with the 
following transaction: $1 billion reference portfolio for a 5-year hypothetical CDO 
consisting of 100 reference credits.  All credits have the same spread of 100 basis points 
and an average recovery rate of 40%.  The flat asset correlation is assumed to be 25%, 
and the risk-free discount rate is a constant 5%.  In addition, all credits have the same 
notional amount: $10 million.  Table 1 shows the tranches of this hypothetical CDO 
along with their fair spreads as calculated using the one-factor pricing model. 
 
Table 1 
Pricing of a hypothetical CDO 

Tranches Attachment 
Point 

Detachment 
Point 

Expected 
Loss % 

Fair Spread 
(bps) 

Implied 
Rating 

Equity 0% 3% 65.05 2557 Un-rated 
Class D 3% 6% 34.27 923 Caa3 
Class C 6% 9% 19.15 465 Caa1 
Class B 9% 12% 10.99 255 B2 
Class A 12% 22% 3.81 86 Ba2 
Senior 22% 100% 0.08 1.8 Aa3 
Portfolio 0.00% 100% 4.80% 100 Ba2 
 
As Table 1 shows, the equity and more junior tranches bear the majority of the portfolio 
credit risk, although they represent a small portion of the capital structure of the CDO.  In 
addition, we can use the expected losses to infer the implied rating of each tranche.  The 
implied ratings show how the credit risk of a Ba2-rated reference portfolio can be 
distributed as to create buckets of lower and higher quality tranches suitable for various 
investors.  Figure 1 shows the unconditional default probability distribution of the 
reference credits. 
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Figure 1 
Unconditional default probability distributions of a hypothetical CDO 
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Figure 2 shows the total expected losses on the reference credits conditional on the 
realizations of the common economic factor.   In this graph, the common factor takes 
values in the interval [-5, 5] where the negative realizations represent progressively 
deteriorating market conditions.  For example, a value of -5 for the common factor 
represents a 5-sigma market event.  This graph has an intuitive interpretation: lower 
values of the common economic factor correspond to lower economic growth and higher 
probabilities of economic recession.  Therefore, the expected losses of the portfolio 
conditional on the economic factor will be higher for lower values of the common factor.  
The graph can therefore serve as a “scenario” or “what-if” analysis.   
 
Similar graphs can also be produced for each tranche.  To illustrate this analysis further, I 
take the 37th, 50th, and 63rd percentiles of the common factor realizations and calculate the 
portfolio expected losses at these points.  The 37th percentile corresponds to a value of -
1.3 for the common factor and represents a market downturn, the 50th corresponds to a 
value of 0 for the common factor and represents a stable market, and the 63rd percentile 
corresponds to a value of 1.3 for the common factor and represents an expanding market.  
Table 2 shows the results of this scenario analysis.  For the sake of completion, figure 3 
and table 3 show the conditional expected losses for the equity tranche, class A tranche, 
and the senior tranche.   
 
Figure 3 clearly shows that the most senior tranche is not totally immune to losses, while 
the equity tranche bears a substantial risk of default losses even under relatively positive 
market conditions.  In interpreting these results, the reader should bear in mind that we 
are starting with a Ba2-rated reference portfolio. 
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Figure 2 
Conditional distribution of expected losses for the reference credits over 5 years 
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Table 2 
Scenario analysis of conditional expected losses over 5 years  

The States of the Economy Scenario Analysis of Expected Losses Downturn Stability Growth 
Expected Losses of the Portfolio 11.63% 3.20% 0.54% 
 
Figure 3 
Conditional expected losses for selected tranches over 5 years 
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Table 3 
Scenario analysis of conditional expected losses for selected tranches over 5 years 

The States of the Economy Scenario Analysis of Expected Losses Downturn Stability Growth 
Expected Losses of Equity tranche 100% 85.6% 18.0% 
Expected Losses of Class A 7.74% 0.00% 0.00% 
Expected Losses of Senior tranche 0.00% 0.00% 0.00% 
 
As discussed in Gibson (2004), table 3 illustrates how the mezzanine tranches can be 
thought of as leveraged bets on business cycle risk. Investors in mezzanine tranches 
receive spreads ranging from 923 to 86 bps according to table 1; however, they have to 
absorb the majority of credit risk in difficult and recessionary market conditions.   
 
Parameter Sensitivities of Synthetic CDO Tranches 
 
In addition to calculating the conditional and unconditional expected losses of the 
tranches, we can also extend the risk analysis of a synthetic CDO tranche to include: 
 

• Computing the tranche sensitivity to changes in correlation. 
• Computing the tranche sensitivity to broad changes in credit spreads. 
• Computing the change in subordination necessary to maintain the base value of a 

tranche as a function of the average credit quality of the reference portfolio. 
• Computing the standard deviation of losses. 

 
A. Correlation Sensitivity 
 
Figure 4 shows the correlation sensitivity of the equity and mezzanine tranches.  The 
graph shows the fair spread of each tranche at different correlation assumptions as a 
multiple of the base spread at 25% correlation.  The equity tranche is clearly long 
correlation as its value increases with higher correlations: the spread falls as correlation 
increases.  This is typical for an equity tranche because higher correlation increases the 
probability of fewer defaults as well as the probability of more defaults.  Since equity 
investors are sensitive to any default it makes sense that they would prefer higher 
probabilities of fewer defaults - hence higher correlation.  In contrast, Class A investors, 
12-22% tranche, are short correlation.  For Class A investors, higher correlation reduces 
the value of the tranche and increases its spread.   
 
Tranches in the middle of the capital structure share similar behavior with either the 
equity tranche or the more senior tranches, but with much less sensitivity to correlation 
assumptions.  For example, Class C, 6-9% tranche, shows very little sensitivity to 
changes in correlations far beyond the initial assumption of 25% correlation.  Figure 5 
completes the picture by showing the high sensitivity of the most senior tranche to 
changes in correlation.  More senior tranches of a CDO transaction are only susceptible 
to extreme market shocks that cause higher market correlations and multiple defaults to 
occur.   
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These observations are consist with the scenario analysis shown in table 3 and figure 3 
which illustrate the conditional impact of wide economic downturns on the value of 
senior tranches.  In fact, although not shown table 3, at the 24th percentile value of the 
common default driver, Class A is expected to lose all its notional and the most senior 
tranche is expected to suffer a 7% loss.  Economic shocks of such a magnitude are not 
unheard of.   
 
The correlation sensitivity analysis illustrates two important features of CDO investing: 
 

• Investors with different correlation assumptions will attach different values to the 
same tranche.  This creates both model risk and an opportunity for correlation 
and/or model arbitrage.  Correlation is a very difficult parameter to measure and 
estimates of correlation are susceptible to estimation errors, personal judgments, 
and correlation breakdowns among many others. 

• Mezzanine tranches are the least sensitive to changes in the correlation 
parameter.  Therefore, these tranches are also the least sensitive to modeling 
errors.  For example, Class C investors will notice very little change to the value 
of their tranche even if correlation doubles.  Investors who wish to minimize 
parameter risk will therefore prefer the middle tranches of a CDO transaction. 

 
Figure 4 
Correlation sensitivity of CDO tranches: base spread is calculated at 25% correlation 
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Figure 5 
Correlation sensitivity of CDO tranches: base spread is calculated at 25% correlation 
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B. Sensitivity to Broad Spread Changes 
 
To see the effect of broad economic changes in credit spreads on CDO tranches, I 
calculate the tranche fair spreads after increasing the credit spreads by 10 bps for all 
credits.  I also calculate the decrease in each tranche’s mark-to-market value and report 
the results in dollar terms and as a percentage of tranche notional.  Table 4 reports these 
results.  The spread on the equity tranche is the least sensitive to a broad increase in credit 
spreads.  However, the change in the mark-to-market as a percentage of tranche notional 
is greatest for the equity tranche.  In contrast, the spread on the most senior tranche has 
the greatest sensitivity to broad changes in market spreads, though its MtM is least 
impacted.  These results are expected since the increase in credit spreads will increase the 
likelihood for a higher number of credit defaults to which the senior tranches are more 
sensitive.  That is, in a market environment where credit quality is deteriorating, the 
probability that we will see multiple credit defaults will increase, which will lower the 
credit subordination available to the senior tranches, and increase the probability of credit 
losses reaching the senior tranches.  It should be noted here that the effect of a broad 
increase in default probabilities across credits is indistinguishable from the effect of an 
increase in the default correlation among credits. 
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Table 4 
Tranche sensitivity to a 10-bps increase in spreads of all credits. 
Tranche Base Spreads New Spreads Spread Change MtM Change $ MtM Change 
0-3% 2557 2781 8.76% 1,635,373 5.45% 
3-6% 923 1035 12.13% 1,222,732 4.08% 
6-9% 465 535 15.05% 848,075 2.83% 
9-12% 255 301 18.04% 581,871 1.94% 
12-22% 86 105 22.09% 822,501 0.82% 
22-100% 1.8 2.4 33.33% 215,233 0.03% 
 
C. The Subordination Effect 
 
The expected loss of a tranche is driven not only by the credit spreads of the reference 
assets but also by the credit enhancement available to the tranche.  To illustrate the effect 
of subordination, or location of a tranche within the capital structure, I run the following 
analysis: the original reference portfolio is divided into two equal groups.  In the first 
group, the reference credits retain their initial spreads of 100 bps, while the second 
group’s credit spreads are varied to 120, 130, 140, 150, and 160 bps.  Starting with the 
base case of a 100 bps for all credits, I calculate the expected loss on Class D, the 3-6% 
tranche.  Then I change the reference portfolio so that half the credits have a spread of 
120 bps, and I back out the subordination necessary to bring about a similar expected loss 
for Class D.  I repeat the same analysis with 130, 140, 150, 160, and 180 bps to obtain the 
levels of subordination that will maintain the expected loss of Class D at the same base 
level in each case.   
 
The graph in figure 6 shows how the subordination varies with the average spread on the 
reference portfolio.  As we progressively decrease the quality of the reference portfolio, 
we need higher levels of subordination to maintain the expected loss of Class D at a level 
similar to its base level of 34.27%.  This analysis illustrates another subtly in CDO 
structuring: practically any desirable rating can be attained for a tranche provided the 
right amount of credit enhancement can be provided to that tranche.  The lower the credit 
quality of the reference portfolio, the more subordination the tranche will require to 
achieve the same rating.  Figure 6 also shows the effect of higher subordination on 
tranche leverage.  Leverage is defined as the expected loss of the tranche divided by the 
expected loss of the reference portfolio.  As figure 6 shows, higher subordination leads to 
lower leverage.  In other words, the lower the credit quality of the reference portfolio, the 
lower the leverage a tranche will require to achieve a particular rating.   
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Figure 6 
Subordination effect on expected losses and leverage 
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D. Measuring Standard Deviation and Unexpected Losses 
  
The one-factor Gaussian model allows an easy and straightforward calculation of the 
standard deviation of tranche losses.  Given the expected loss of a tranche at time T, its 
loss distribution, and its default probabilities, we can calculate the standard deviation of 
losses at time T with this formula: 
 
Standard Deviation = [Σk (x – EL)2.P(k, T)]0.5           (11) 
 
Where x is the tranche loss given the number of defaults in the reference portfolio and the 
summation is taken over 0 defaults to k = 100 defaults.  Using equation 11, I calculate the 
standard deviation of losses for each tranche.  The results are shown in table 5.  We can 
then use the standard deviation to define measures for unexpected losses and required 
economic capital to hedge against extreme losses.  Here I define the unexpected losses of 
a tranche to be the loss level at one standard deviation above the expected loss of the 
tranche 
 
Table5 
Measures of tranche risk and unexpected losses 
 Portfolio 0-3% 3-6% 6-9% 9-12% 12-22% 22-100%
S. Deviation  5.3% 37% 45% 39% 31.7% 17.34% 1.07% 
S. Deviation ($ mil) 52.9 11.1 13.5 11.7 9.5 17.3 8.3 
Unexpected Loss ($ mil) 96.2 30.0 23.7 17.5 12.8 21.1 8.9 
Percent of Notional 9.62% 100% 80% 58% 43% 21% 1.15% 
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Monte Carlo Simulation of Losses 
 
The Monte Carlo approach, described in Li (2000), generates the loss distribution by 
simulating the default times of the reference credits using the Gaussian copula.  This 
approach is flexible in that it allows for stochastic modeling of the recovery and default 
parameters.  The Monte Carlo approach can easily incorporate more than one economic 
factor, it allows for sampling losses from fat-tailed distributions, and it is capable of 
capturing a more complex correlation structure.  However, the Monte Carlo approach is 
time-consuming as it requires a large number of simulations in order to reduce estimation 
error and capture extreme losses that will only affect the most senior tranches.  The 
recursive approach, on the other hand, is simpler and faster, but lacks the flexibility of the 
Monte Carlo approach.   
 
Using the same modeling assumptions, the Monte Carlo approach should produce similar 
results to those obtained from the recursion method.  That is, if we set the recovery rates, 
credit spreads, and correlation parameter in the Monte Carlo model to those used for the 
recursion method, the results of both approaches aught to be similar.  Table 6 shows the 
Monte Carlo results using one million simulations.  As evident from table 6, the recursion 
approach provides a robust and accurate estimation of expected losses and standard 
deviations. 
 
Table 6: 
Expected losses and standard deviations with one million Monte Carlo simulations 
 Portfolio 0-3% 3-6% 6-9% 9-12% 12-22% 22-100%
Expected Losses (%) 4.8 66.8 35 19.1 10.6 3.5 0.076 
S. Deviations (%) 5.0 37.8 44 37 29.3 15.5 0.009 
 
Conclusion 
 
In this article, I have demonstrated a simple, yet powerful technique to calculate the 
default distribution of a credit portfolio.  Using this technique, I have shown how the fair 
spreads and risk parameters of synthetic CDO tranches can be calculated.  The important 
highlights of this article can be summarized as follows: 
 

• The equity and most junior tranches of a synthetic CDO bear the majority of 
credit risk of the reference portfolio. 

• The most senior tranche is not completely immune to credit losses.   
• The value of the equity and most junior tranches increases as correlation across 

the credits rises. On the other hand, the value of the senior tranches decreases 
with higher correlation. 

• The mezzanine tranche is the least sensitivity to the correlation parameter and 
to correlation model risk. 

• The senior tranches are more sensitive to broad changes in credit spreads. 
• There is a trade-off between the quality of the reference credits and the 

subordination required to attain a particular rating for a tranche.  The lower the 
quality of the reference credits, the higher the required subordination. 
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