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Introduction 
Powerfully built techniques for handling the dynamics and calculus of stochastic variables 
such as interest rates have been developed over the last few decades. In this section we 
introduce the fundamentals of mathematical finance with respect to fixed income pricing. 
An extended and through discussion of the content of this section can be found in 
Choudhry (2004).  
 
To begin we need to state the following sets of assumptions, generally adopted from 
Merton’s1 pricing method: 
 
 There are no transaction cost or taxes 
 There exists an exchange market for borrowing and lending at the same rate of interest 

(no bid-offer spread) 
 The term structure is “flat” and known with certainty 
 There is a rational and competitive market 
 Market participants prefer to increase wealth 
 There are no arbitrage opportunities. 

 
The main prerequisite of mathematical finance that is imperative in understanding fixed 
income are risk neutral valuation and arbitrage pricing theory. In this introduction we will 
establish the probabilistic setting in which these concepts are formulated.  
 
As stated in Musiela and Rutkowski (1998), an economy is a family of filtered space 
( ){ }PI ∈µµΩ :,, 2, where the filtration satisfies the usual conditions3, and P is a collection 

of mutually equivalent probability measures on the measurable space. 4 We model the 
subjective market uncertainty of each investor by associating to each investor a probability 
measure from P. Investors with more risky tolerance will be represented by probability 
measures that weight unfavourable events relatively lower, whereas conservatives investors 
are characterized by probability measures that weight unfavourable relatively higher. 
Moreover, it is assumed that investment information is revealed to each investor 
simultaneously as events in the filtration. 
 
Since the measures in P are mutually equivalent, the investors agree on the events that have 
and have not occurred. We refer the reader to Neftci (2000) for an excellent example of this. 
It is convenient to further assume that investors initially have no other information, that is, 
the filtration is trivial with respect to each probability measure in P. This assumption 
asserts that the initial information available to investors is objective. 
 
 
 

                                                 
1 Robert C. Merton “Continuous-Time Finance” 1998 
2 To forecast a random variable, one utilizes some information denoted by the symbol It . See more of this 
Neftci (2000) pp. 97 
3 See Karatzas and Shreve (1991) section 2.7 and Korn and Korn (2000) pp. 18. 
4 For a definition of measurable space and how to construct this see Jeffrey S. Rosenthal (2000) section 2. 
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The foundation of a working knowledge of fixed income finance rests on an understanding 
of the inherent relationship between the various interest rates and bonds. Consider the 
economy ( ){ }PI ∈µµΩ :,,  on the interval [ ]T0,  and a Markov process 5  tX  
with ( )ts0XI ≤≤≡ :σ . Implicit in this statement is the assumption that the state variable6 
probability XPP ≡  associated with tX  belongs to P for some fixed elements X of the state 
space tX . 
 
Setting the scene further, a zero coupon or discount bond of maturity T is a security that 
pays the holder one unit of currency at time T. The prices of government and corporate 
discount bonds at time Tt ≤  are denoted ),( TtB  and ),(~ TtB  respectively. The local 
expectation hypothesis (L-EH) relates the discount bond to the instantaneous interest rate, 
or the spot rate for borrowing of the loan over the time interval [ ]dttt +, . 
 
Denote the riskless spot rate by )( tt Xrr =  and assume that it is a non-negative, adapted 
process with almost all sample paths integrable on the [ ]T0,  with respect to the Lebesgue 
measure. 
 
The L-EH asserts that  
 

∫−=
T
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As defined in Musiela and Rutkowski (1998), the economic interpretation of this 
hypothesis is that “… the current bond price equals the expected value … of the bond price 
in the next (infinitesimal) period, discounted at the current short-term rate”.7 
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5 See Choudhry (2004) pp. 185 for a lucid definition of the Markov process. 
6 See Choudhry (2004), pp. 144. 
7 See ibid, pp. 283. 
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Under the assumption of no arbitrage, it can be shown that above equation holds under the 
risk neutral measure. 8 Naturally as similar relationship holds between the risky bond and 
the risky spot rate. 
 
 
Bond pricing 
The process tB  is referred to as an accumulation factor or savings account.9 tB  represents 
the price of a riskless security that continuously compounds at the spot rate. More precisely 
it is the amount of cash at time t that accumulates by investing $1 initially, and continually 
rolling over a bond with an infinitesimal time to maturity. See Musiela and Rutkowski 
(1998) page 268 for more detail on this. 
 
Therefore an adapted process tB  of finite variation with continuous sample path is given by  

dsXrB
t

0
st )(exp(∫=  

 
When security tS is divided by the saving account the resultant process is the price process 
of the security discounted at the riskless rate. 10 
 
We consider next a coupon-bearing bond, with fixed coupon payments n1 cc ,...,  at 
predetermined times n1 TT ,...,  with TTn = . 
 
The price of the coupon bond is simply the present value of the sum of these cash flows. 
Denoting the price of a riskless coupon bond at time by ),( TtcB , we have 
 

∑
=

=
n

1i
ic TtBcTtB ),(),(  

A similar relationship holds for the risky coupon bond. 
 
However the coupons are typically structured by 
setting cN1n1cci +=−== nc and ,...,ifor  , where N is the principal or face value, and c is 
a fixed amount that is generally quoted as a percentage of N called the coupon rate. A 
problem that arises in comparing coupon bonds is that uncertainty about the rate at which 
the coupons will be reinvested causes uncertainty in the total return of the coupon bond. 
Hence, coupon bonds of different coupon rates and payment dates are not directly 
comparable. The standard way to overcome this problem is to extend the notion of a yield 
to maturity to coupon bearing bonds. 
 
 
 
 

                                                 
8 We refer to the interested reader to Ingersoll (1987). 
9 See Pliska (1997) chapter 1. 
10 In other words, the bank account is the Numeraire. 
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Yield to Maturity (YTM) 
In Musiela and Rutkowski (1998) the continuously compounded riskless yield to maturity 

),...,.,...,;()( n1n1cc TTcctYtY =  is derived as the unique exposition to the equation 

∑
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and stands for the total return on the coupon bond under the assumption that each of the 
coupon payments occurring after t is reinvested at the rate )(tYc . The risky yield to maturity 
is defined in a similar fashion. 
 
 
Expectation Hypothesis 
There are number of excellent textbooks that the reader is encouraged to read which 
provides the necessary background, in particular Ingersoll (1987) and Choudhry (2004). 
 
The yield to maturity expectation hypothesis (YTM-EH) relates the riskless YTM and the 
riskless spot rate. Musiela and Rutkowski (1998) state that this hypothesis as the assertion 
that  
 

“… the [continuously compounded] yield from holding any [discount] bond is equal 
to the [continuously compounded yield expected from rolling over a series of single 
period [discount] bonds”.  

 
To gain a better understanding of this statement, we first observe that the YTM of a discrete 

time setting with the partition{ } T][t, of it
n

0i=
, we have that the yield of a discount bond 

),( i1i ttB −   is given by 
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from which we deduce that the bond price is given by 
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Since the YTM-EH asserts that the yield of ),( TtB  is equal to the yield expected from 
rolling over a series of discount bonds ),( i1i ttB − , it follows that 
 

.)(

),(ln)),(ln(),(









−

=

















−

−=
−

=

∑
−

−
−

− t

n

Li
ttP

t

n

Li
iLiP

ItXrE
tT

1

IttBE
tT

1TtB
tT

1TtY

1i
∆

 

 



 

©YieldCurve.com 2004 Mohamoud Dualeh 

6

Taking the limit, as the mesh of the partition tends to zero; we obtain the continuously time 
discount bond price and YTM under the YTM-EH: 
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The last interest rate that we will consider is the instantaneous forward interest rate, or 
forward rate for borrowing or lending over the time interval [ ]dsss +,  as seen from 
time [ ]st ≤ . This will be denoted by ),( stf  in the riskless case and ),(~ stf  in the risky case. 
 
If the dynamics of the process { } Tststf ≤≤),(  are specified, then the price of the discount 
bond is defined by 
 

∫−=
T

t

dstsfTtB ),(exp(),(  

Alternatively, if the dynamics of the discount bond are known, then we have 
 

),,(ln),( TtB
T

Ttf
∂
∂

−=  

provided that this derivation exists!  
 
Therefore the YTM-EH asserts that the forward rate is an unbiased estimate of the spot rate 
under the state variable probability measure P. See Choudhry (2004) chapter 2, equation 
(2.18). For the relationship between the spot and forward rate we refer the reader to read 
further in chapter 3 of Choudhry (2004). 
 
Review of Arbitrage Pricing Theory11 
The methodology presented in this review can be found in Musiela and Rutkowski (1998)12. 
Consider the economy ( ){ }PI ∈µµΩ :,,  on the interval [ ]T0, . A trading strategy or 
portfolio tφ  is a vector of locally bounded adapted processes of tradable asset holdings. 
Moreover, it is assumed that every sample path is right continuous with left limits13. A 
trading strategy tφ  is called self-financing if the wealth process )(φtW   of the trading 
strategy neither receives nor pays out cash flows external to the assets that comprise the 
strategy. 
 

                                                 
11 See Bjork (1997) for detailed discussion. 
12 See pages 72, 82, 188 and 231-232. 
13 Usually denoted RCLL and also known as cadlag! See Karatzas and Shreve (1991) page 4. 
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More precisely, let iφ  denote the holding of asset iS . Then, a self-financing trading strategy 

),...,( nL φφφ =  is defined by asserting that ∑
=

=
n
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A strategy TΦφ∈  is called an arbitrage opportunity if the wealth process )(φW  satisfies for 
some (consequently for all) P∈P , all the following conditions 
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Thus, taking an advantage the arbitrage opportunity it is possible to create limitless wealth 
without risk. Under the assumption that arbitrage portfolios do not exist, it has been shown 
that there exists a risk-neutral or martingale measure Q in our economy under which the 
discounted asset process t

1
t SBZ −≡  follows a martingale. This result is known as the 

Fundamental Theorem of Asset Pricing. Musiela and Rutkowski (1998) define this theorem 
as “a result, which establishes the equivalence the absence of an arbitrage opportunity in 
the stochastic model of financial market, and the existence of a martingale measure”. 
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