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Which Archimedean Copula the right one? 
Mario R. Melchiori2 

Abstract 
This paper presents the concept of the copula from a practical standpoint. Given the widened use of 

the multinormal distribution, we argue its inadequacy, while advocate using the copula as an alternative 
and better approach, for instance with regard to credit market valuation and pricing. We examine what 
the copulas are used for within areas of risk management. Then we expose a guide to choose both the 
margins and the Archimedean copula that provide a better fit to real-world data. In addition, we provide 
an algorithm to simulate a random bivariate distribution from an Archimedean copula. In order to cover 
the gap between the theory and its practical implementation, we provide the VBA codes required. We also 
illustrate the use of copulas in the pricing of a first-to-default credit derivative contract. They are used in 
a numerical example that illustrates the use of the copula in the pricing of a first-to-default contract. Two 
spreadsheets accompany the paper, and present a step-by-step description of the practical application of 
the copula. 

 
 

Keywords: Copula, Kendall Tau, Dependence, and Credit Derivatives 

 

Introduction 
Since Li (2000) first introduced copulas into default modeling, there has been an 

increasing interest in this approach. Prior to that time, the copula concept was used frequently 
in survival analysis and actuarial sciences.  

 
Following to Li (2000), a copula is a function that links univariate marginals to their full 
multivariate distribution. For m uniform random variables 1 2, ,..., mU U U  the joint distribution 

function C  is defined as: 
 

( )ρ = ≤ ≤ ≤  1 2 1 1 2 2, ,..., , Pr , ,...,m m mC u u u U u U u U u  

 
where ρ 3 is a dependence parameter, can also to be called a copula function. 

 
A copula can be used to link marginal distributions with a joint distribution. For 

determinate univariate marginal distribution functions ( ) ( ) ( )1 1 2 2, ,..., m mF x F x F x , the function  

( ) ( ) ( )( ) ( )=1 1 2 2 1 2, ,..., , ,...,m m mC F x F x F x F x x x  

 

which is defined using a copula function C , results in a multivariate distribution function with 
univariate marginal distributions specified by ( ) ( ) ( )1 1 2 2, ,..., m mF x F x F x . Sklar (1959) 

established the converse. He showed that any joint distribution function F can be seen as a 
copula function. He proved that if ( )1 2, ,..., mF x x x is a joint multivariate distribution function 

with univariate marginal distribution functions , then there exists a copula function 
( )1 2, ,..., mC u u u  such that 

                                                 
2 I am grateful to Arcady Novosyolov, Carina Strada, Glyn Holton, Kazuo Oshima, Luciano Alloatti and Moorad 
Choudhry for their generous contributions. All remaining errors are, of course, my own. I want to thank to Mohamoud 
B Dualeh for encouraging me to write this paper. 
3 As Embrechts et. al. (2001) show, the correlation is only a limited description of the dependence between random 
variables, except for the multivariate normal distribution where the correlation fully describes the dependence 
structure. 
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( ) ( ) ( ) ( )( )=1 2 1 1 2 2, ,..., , ,...,m m mF x x x C F x F x F x . 

If  each iF  is continuous then C  is unique. Thus, copula functions provide an unifying and 
flexible way to study joint distributions. Another important derivation is that the copula allows 
us to model the dependence structure independently from the marginal distributions. 

 
In this paper, we will focus the bivariate copula function ( ),C u v for uniform variables U  

and V , defined over the area ( ){ }< ≤ < ≤, | 0 1,0 1u v u v  

A normal world 
 
Copulas are commonly adopted both in market risk models and credit risk models, either 

explicitly or implicitly, when  the models do use of the multinormal distribution. For instance 
the commercial credit risk models developed by KMV and CreditMetrics use this. 

 
From the copula’s point of view the multinormal distribution has normal marginal 

distribution and Gaussian copula dependence.  
 
Hereafter, we will use the term Normal for the univariate marginal distributions and the 

term Gaussian referring to the copula dependence. 
 
The advantage of using normal dependence structure doesn’t arise, as should be suppose, 

from historical behavior of the financial nor credit market, but in its simplicity, analytical 
manageability and the easy estimation the its only parameter, the correlation matrix. Empirical 
evidence suggests that the use of multinormal distribution is inadequate4. The non-normality of 
univariate and multivariate equity returns is historically unmistakable. In other words, there is 
clear evidence that equity returns have unconditional fat tails, to wit, the extreme events are 
more probable than anticipated by normal distribution, not only in marginals but also in higher 
dimensions. This is important both for market risk models as credit risk one, where equity 
returns are used as a proxy for asset returns that follow a multivariate normal distribution, 
and, therefore, default times have a multivariate normal dependence structure as well. 

 
As Embrechts et al (2001) show, there are many pitfalls to the normality assumption. For 

us, the main snare is the small probability of extreme joint events. In credit risk case, defaults 
are rare events, so that the tail dependence has a great impact on the default structure. Tail 
dependence can be measure. The tail dependence for two random variables X and Y with 

marginal distributions XF and YF  measures the probability that Y will have a realization in the 
tail of its distribution, conditioned that X has had a realization in its own tail. Tail dependence 
relates the amount of dependence in the upper right quadrant tail or lower left one of a 
bivariate distribution, so we could have upper tail dependence, lower tail dependency or both. 
Upper tail dependence exists when there is a probability that positive outliers happen jointly. 
Upper tail dependence is defined as: 

 

( ) ( )( )1 1

1
limPr |upper Y Xu

Y F u X F uλ − −

→
= ≥ ≥   (1.1) 

 

where 1F −  denotes the inverse cumulative distribution function and u  is an uniform variable 

defined over ( )0,1 . 

 

                                                 
4 See R. Mashal, M. Naldi, and A. Zeevi. The Dependence Structure of Asset Returns, forthcoming, RISK.   
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Since ( ) ( )( )1 1Pr |Y XY F u X F u− −≥ ≥  can be written as: 
 

 
( )( ) ( )( ) ( ) ( )( )

( )( )
1 1 1 1

1

1 Pr Pr Pr ,

1 Pr

X Y X Y

X

X F u Y F u X F u Y F u

X F u

− − − −

−

− ≤ − ≤ + ≤ ≤

− ≤
 (1.2) 

 
 
given that: 
 ( )( ) ( )( )1 1Pr PrX YX F u Y F u u− −≤ = ≤ =                (1.3) 

and 
 
 ( ) ( )( ) ( )1 1Pr , ,X YX F u Y F u C u u− −≤ ≤ =                 (1.4) 

 
an alternative and equivalent definition (for continuous random variables) of (1.1) , is the 
following: 
 
 

 
( )

1

1 2 ,
lim

1upper u

u C u u

u
λ

→

− +
=

−
               (1.5) 

 
 
Lower tail dependence is symmetrically defined: 
 
 ( ) ( )( )1 1

0
limPr |Lower Y Xu

Y F u X F uλ − −

→
= ≤ ≤  (1.6) 

 
Since ( ) ( )( )1 1Pr |Y XY F u X F u− −≤ ≤  can be written as: 
 

 
( ) ( )( )

( )( )
1 1

1

Pr ,

Pr

X Y

X

X F u Y F u

X F u

− −

−

≤ ≤

≤
 (1.7) 

 
 
given (1.3) and (1.4) an alternative and equivalent definition (for continuous random variables) 
of (1.6) , is the following: 
 
 

 
( )

0

,
limLower u

C u u

u
λ

→
=                  (1.8) 

 
The Gaussian copula with correlation ρ <1 does not have lower tail dependence nor an 

upper one ( ),Lower upperλ λ .  

It is important to remark that the tail area dependency measure ( ),Lower upperλ λ depends on the 

copula and not on the marginal distributions. 
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Non-Gaussian copulas such as t and  Archimedean used as underlying dependence 

structure with anyone else marginal distribution, have upper tail dependence, lower tail 
dependency or both, so that, they could describe better the reality of the behavior of the 
financial and credit markets. See the appendix D for a non-parametric estimation of the tail 
dependence5. 

Credit Derivatives Risk Management Application 
Up to now, we have seen what the copula is and why the multinormal distribution is not 

an adequate assumption. Now, we show what the copula is used for within risk management. 
 
As noted earlier, copulas were used frequently in survival analysis and actuarial sciences. 

In addition, it is employed in loss aggregation, stress testing, default modelling and operational 
risk. Hereafter, we concentrate the use of the copula in the default modelling scope, more 
concretely,  in the Credit Derivatives area.  

 
Default risk has been extensively modelled at an individual level, but little is known about 

default risk at a portfolio level where the default dependence is a meaningful aspect for 
considering. Further, in recent years we have seen new financial instruments, such as 
collateralized debt obligations (CDOs), and nth-to-default baskets which have contingent 
payoffs on the joint default behaviour of the underling securities. In the case of an nth-to-
default basket, the joint dependence is of vital importance in its pricing, because the amount of 
names are not large enough to ensure a correct diversification. 

 
Later in this  article we provide an example to illustrate the use of copula in the valuation 

of a first-to-default contract. 
 
The appropriate choice of the marginal distribution is needed but not enough to 

accurately measure and price the risk exposure at a portfolio level, in addition is critical to 
understand and to model the default dependence to choose the fitted joint distribution among 
the underling securities. 

Archimedean copulas 
We will focus our attention to one special class of copula termed the Archimedean copula. 
 

An Archimedean copula can be written in the following way:  
 

 ( ) ( ) ( )ϕ ϕ ϕ−  = + + 
1

1 1,..., ...n nC u u u u  (1.9) 

 
for all ≤ ≤10 ,..., 1nu u  and where ϕ  is a function termed generator, satisfying: 

• ( )ϕ =1 0 ; 

• for all ( ) ( )ϕ∈ <'0,1 , 0t t , this is to say ϕ  is decreasing; 

• for all ( ) ( )ϕ∈ ≥0,1 , ´´ 0t t , this is to say ϕ  is convex. 

 
 
 
 

                                                 
5 For a formal calculation of (1.1) see EMBRECHTS, P., A. J. MCNEIL and D. STRAUMANN (1999): Correlation and 
Dependence in Risk Management: Properties and Pitfalls. 
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Examples of bivariate Archimedean copulas include the following: 
 

• Product or Independent copula: 
 

 ( ) ( )ϕ = − =ln ; , .t t C u v u v  (1.10) 

• Clayton copula6 

 ( ) ( )θ θ θ θϕ θ
−

− − −= − > + −
1

t 1, 0; 1t C u v  (1.11) 

• Gumbel copula7 

 ( ) ( ) ( )
( ) ( )

1

ln ln

ln , 1; ,
u v

t t C u v e

θ θ θ

θϕ θ

   − − + −     = − ≥ =  (1.12) 

 
• Frank copula8 

 

 ( ) ( )
( ) ( )

( )
1 11 1

ln , ; , ln 1
1 1

u vt e ee
t C u v

e e

θ θθ

θ θ
ϕ θ

θ

− −−

− −

 − −−  = − ∈ = − +
 − − 

R  (1.13) 

 
The method described ahead enables one to select the Archimedean copula, which 

provides a better fit to real-world data. An Archimedean copula has the analytical 
representation given by equation (1.9). So, in order to select the copula, it is sufficient to 
identify the generator ( )tϕ . 

Selecting the right marginal distribution 
 
Suppose you have two historical time series compound by 1000 observed data over a 

period of time, such as the following:9 
 

 Series 1 Series 2 
                     1             0.856617       -0.609474
                     2             1.221406         0.974876
                     3             0.359444         1.088642
                     4             0.777068         0.651016
                     5             0.734274         0.962609

. . .

. . .

. . .
                 996            -0.662160       -1.240644
                 997            -0.567470       -1.196790
                 998             0.849134         1.456710
                 999            -0.814523       -0.757466
              1,000             0.580571         0.168181

 
 
 
 
 

                                                 
6 Clayton (1978), Cook-Johnson (1981), Oakes (1982). 
7 Gumbel (1960), Hougaard (1986). 
8 Frank (1979). 
9 In the context of this paper these series can be considered as equity returns that are used as a proxy for asset 
returns. First, we investigate the marginal distribution of each series and then we inquire which is the dependence 
among them. 
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First, it is necessary to determine in what manner the series are marginally distributed. For 
doing this, we using the chart, other data can to request more sophisticated approach10. 
Commercial simulation software such as Crystal Ball11 or @Risk12 supply tools for fitting 
historical data to determinate probability distribution. 

 
  Series 1 Series 2 

Average               0.035            0.073
Std Dev               1.021            1.008
Std Err               0.032            0.032
Max               3.234            2.662
Min              -3.247           -2.788
Quantile 95%              -1.675           -1.658

 
Series 1 
Bins Frequency

             -3.00                    5
             -2.50                    5
             -2.00                  17
             -1.50                  47
             -1.00                  79
             -0.50                122
              0.00                201
              0.50                205
              1.00                150
              1.50                  93
              2.00                  53
              2.50                  17
              3.00                    5
              3.50                    1

 
Series 2 
Bins  Frequency

             -3.50                   -  
             -3.00                   -  
             -2.50                    3
             -2.00                  14
             -1.50                  53
             -1.00                  69
             -0.50                144
              0.00                186
              0.50                210
              1.00                134
              1.50                106
              2.00                  45
              2.50                  32
              3.00                    4
              3.50                   -  

 

                                                 
10 A next paper will introduce some of the approach such as Maximum likelihood Estimation 
11 Decisioneering, Inc. - offers the Crystal Ball line of spreadsheet modeling software for time-series forecasting, 
risk analysis, and optimization using Monte Carlo simulation. 
12 Palisade Corporation - develops applications for risk and decision analysis using Monte Carlo simulation and 
optimization, including @RISK. All are add-ins to Excel 
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Series 1: Histogram of the historical realization. 

 
 

 
 

Series 2: Histogram of the historical realization. 
 
 
Data and plots show that the Normal Standard Probability Distribution is a fitted election 

in this case. 
 
Knowing the marginal distribution, we are able to separate marginal behaviour and dependence 
structure. The dependence structure is fully described by the joint distribution of uniform 
variates obtained from the marginal distributions, Normal Standard Distributions in our case. 
This point is of fundamental importance and often cause considerably troubles.  Remember, 
dependence structure doesn’t derive from the marginal distributions, Normal Standard in this 
example, but from the uniform variates obtained from the marginal distributions. We just need 
to know marginal distributions so that to recognize the cumulative distribution functions (CDF) 
that allows us to compute the uniform variate.  
 
 
 
 
 
 
 



Which Archimedean Copula is the right one?                                                                             Mario Melchiori 

9 

 
For example:  

 

 Series 1 Series 2 
                     1             0.856617       -0.609474

 
  

 ( )0.856617  0.804172 Φ =  (1.14) 

 ( )-0.609474 0.271105Φ =  (1.15) 

    
where Φ denotes the normal cumulative distribution function. In Excel language: 
 
 ( )NormSDist 0.856617 0.804172= =  (1.16) 

 ( )=NormSDist -0.609474 0.271105=  (1.17) 

 
the dependence structure refers to the relationship between 0.0804172 and 0.271105. 

 
Now, what if the marginal distribution is Lognormal? We must perforce then use the 

correct CDF (LogNormDist function in Excel). 
 

Dependence. Kendall Tau τ 
For investigating more deeply the dependence we need a measure for gauging it. It is 

known as Kendall τ  (Tau). It is a rank correlation measure, it is invariant under strictly 
increasing transformations of the underlying random variables. Linear correlation (or Pearson’s 
correlation ( )ρ ) is most frequently used in practice as a measure of dependence, but it lacks 

this property. 
 
If we call c and d respectively the numbers of pairs of variables, which are concordant and 
discordant, then Kendall’s Tau writes : 

 c d

c d
p p

c d
τ −

= = −
+

 (1.18)13 

where cp and dp are respectively the probabilities of concordance and discordance. 

Let t tX Y=   tV  be a vector of two random variables at time t. In our 

case 996 996-0.662160     -1.240644=   996V , for example. Then, two distinct observations tV  and 

sV  are concordant if ( ) ( )− ⋅ − > 0t s t sX X Y Y . Conversely, if we have ( ) ( )− ⋅ − < 0t s t sX X Y Y , tV  

and sV  are discordant (i.e. : negatively dependent). 
 
 
 
 
 
 
 
 
 
 

                                                 
13 The formula ( ) ( )

1

1 1 2 2
2

_ _
n

n i j i j
i j

sign X X X Xτ
−

<

   =     
∑ (1.32) can be used for  estimating τ 
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Calculating the lineal correlation from both marginal and uniform distribution can see the 
property of invariability under strictly increasing transformations of the underlying random 
variables: 

 
 

Lineal Correlation  
 Uniform variables U(0,1)
           1.000           0.655  
           0.655           1.000  
 Marginal Distributions  
           1.000           0.629  
           0.629           1.000  

 
 
They are different. Correlation’s Pearson is variant under strictly increasing 

transformations of the underlying random variables. The fundamental reason why correlation 
fails as an invariant measure of dependency is due to the fact that the Pearson Correlation 
coefficient depends not only on the copula but also on the marginal distributions. Thus the 
measure is affected by changes of scale in the marginal variables. 

 
Now we compute the Kendall Tau dependence: 
 

τ   
Uniform variables 
U(0,1) 

1.000 0.458
0.458 1.000

Marginal Distributions 
1,000 0,458
0,458 1,000

 
They are alike. Kendall Tau is invariant under strictly increasing transformations of the 

underlying random variables. 

Archimedean Bivariate Copula 

The following algorithm generates random variates ( ),
T

u v whose joint distribution is an 

Archimedean copula C  with generatorϕ : 

Algorithm: 

 
1. Simulate two independent ( )0,1U  random variates s and q . 

2. Set ( )1
Copulat K q−= , where CopulaK  is the distribution function ( ),C u v . 

3. Set ( )( )1 .u s tϕ ϕ−=  and ( ) ( )( )1 1v s tϕ ϕ−= − . 

 
For each Archimedean copula we need, to wit: 

 
A. Kendall τ (1.32) 
B. Theta θ  
C. Generator ( )tϕ  

D. Generator’s first derivate ( )' tϕ  
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E. Generator’s Inverse ( )1 tϕ −  

F. The distribution function of ( ) ( )
( )

,
'Copula

t
C u v K t

t

ϕ
ϕ

= = −  

G. Distribution function inverse 1
CopulaK −  ( When it has not a closed form as in 

case of Gumbel, Frank and Clayton Archimedean copula, it can be 

obtained through the equation 
( )
( )'

t
t q

t

ϕ
ϕ

 
− −  

 
 by numerical root finding). 

For doing this, we need the first derivate regard to t  of 
( )
( )'

t
t

t

ϕ
ϕ

− . 

 
For the Gumbel copula, we have: 
 
Table 1 

B.(*) C. D. E. F. G.(**) 
1

1
θ

τ
=

−
 

(1.19) 

( )lnt
θ

−  

 
(1.20) 

( ) 1 1
lnt

t
θθ −

−  

(1.21) 

1

t

e
θ

 
 −
 
   

(1.22) 

( )lnt t
t

θ
−  

(1.23) 

ln( ) 1
1

t
θ θ

− − +

(1.24) 

      (*) 1θ ≥ . Only positive dependence. 

(**) There is not a closed form for the inverse distribution function 1
GumbelK − , so G. will be used for obtaining  it by 

numerical root finding.  
 
So that: 

 

 
( )( )( )

1

lns t
u e

θ θ− ⋅ −
=  (1.25) 

 

 
( ) ( )( )( )

1

1 lns t
v e

θ θ− − ⋅ −
=  (1.26) 

 
 
 

 

VBA code that generates random variates from the 2-dimensional Gumbel copula 
 

 
Function GumbelCopula(ByVal Theta As Double, Optional Random1, Optional Random2) As 
Variant 
‘ Generates random variates from the 2-dimensional Gumbel copula 
 
Dim t As Double, s As Double, q As Double, u() As Double 
Application.Volatile 
ReDim u(1 To 2) 
 
‘ Simulate two independent ( )0,1U  random variates s andq . 

If IsMissing(Random1) Then 
   s = Rnd 
   Else 
   s = Random1 
   End If 
   If IsMissing(Random2) Then 
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   q = Rnd 
   Else 
   q = Random2 
   End If 
 
‘ Set ( )1

Copulat K q−= , where CopulaK  is the distribution function of ( ),C u v . 

‘ Because Gumbel has not a closed form KCg_Inv is obtained through by numerical 
root finding 
t = KCg_Inv(Theta, q) 
 
‘ Set ( )( )1 .u s tϕ ϕ−=  and ( ) ( )( )1 1v s tϕ ϕ−= − . 

u(1) = Exp(-(s * (-Log(t)) ^ Theta) ^ (1 / Theta)) 
u(2) = Exp(-((1 - s) * (-Log(t)) ^ Theta) ^ (1 / Theta)) 
 
‘ The vector u(2) is a pair of pseudo random numbers that are uniformly distributed 
on [0,1] x [0,1]  and that has a Gumbel copula as a joint distribution function. 
GumbelCopula = u 
 
End Function 

 
 

VBA Code that computes Inverse Cumulative Distribution Function using numerical 
root finding  

 
 
Function KCg_Inv(ByVal Theta As Double, ByVal q As Double, Optional tolerance As Single = 
0.0000000001) As Double 
 
‘Because Gumbel has not a closed form ( )1

Copulat K q−= is obtained through by numerical 

root finding 
 
Dim t As Double, tzero As Double, KCg As Double, delta As Double, diff As Double 
 
   t = tolerancia 
   tzero = 0 
   Do While True 
        

‘ The distribution function of ( ) ( )
( )

,
'Copula

t
C u v K t

t

ϕ
ϕ

= = − .Gumbel equal to 
( )lnt t

t
θ

−  (1.23) 

 
       KCg = t - (t * Log(t) / Theta) – q 
 

 ‘ Derivate of  the distribution function of ( ) ( )
( )

,
'Copula

t
C u v K t

t

ϕ
ϕ

= = − .Gumbel equal to  

ln( ) 1
1

t
θ θ

− − +  (1.24) 

 
       delta = -(Log(t) / Theta) - (1 / Theta) + 1 
 
 
       diff = KCg - tzero 



Which Archimedean Copula is the right one?                                                                             Mario Melchiori 

13 

       If Abs(diff) < tolerance Then Exit Do 
       t = t + (-diff / delta) 
   Loop 
   KCg_Inv = t 
   Exit Function 
End Function 

 
 
The vector u(2) is a pair of pseudo random numbers that are uniformly distributed on 

[0,1] x [0,1]  and it has a Gumbel copula as a joint distribution function. 
 
Then take the marginal distribution functions, in this case, normal standard, we put  

 
 ( )1u r= Φ  (1.27) 

( )1v=NormSDist r  

 
 ( )2v r= Φ  (1.28) 

( )2v=NormSDist r  

then we have: 
 ( )1

1r u−= Φ  (1.29) 

( )1 NormSInv ur =  

 
 ( )1

2r v−= Φ  (1.30) 

( )2 NormSInv vr =  

 
are pseudo random numbers with distribution function Φ ( Normal Standard ) and joint 
distribution function Gumbel. 

Which Archimedean copula is the right one? 
 

The distribution function of an Archimedean copula, as it already had been exposed in F, 
is represented for the following formula:  

( ) ( )
( )

,
'Copula

t
C u v K t

t

ϕ
ϕ

= = −
 (1.31) 

To identifyϕ , we: 
 

1. Estimate Kendall’s correlation coefficient using the usual nonparametric 
estimate: 

  

 ( ) ( )
1

1 1 2 2
2

_ _
n

n i j i j
i j

sign X X X Xτ
−

<

   =     
∑  (1.32) 

 
2. Construct a nonparametric estimate of CopulaK , the following way: 

i. First, define the pseudo-observations ( )1 1{number of i j iT X X= <  such 

that 1 1j iX X<  and 2 2 }j iX X<  / ( )1n −  for 1,2,..., .i n=  

ii. Second, construct the estimate of CopulaK  as ( )
nCopulaK t = proportion 

of iT ’s .t≤   
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3. Now construct a parametric estimate of CopulaK using the relationship 

(1.31). 

 
For example, choose a generatorϕ , for this refers to Table 1 and Appendix A, and use the 

estimate nτ to calculate an estimate deθ , say nθ . Use nθ  to estimate ( )xϕ , say ( )nxϕ .Finally, use 

( )nxϕ  to estimate ( )CopulaK t , say ( )
nCopulaK t . 

 
In order to select the Archimedean copula which fits better the data, Frees and Valdez 

(1998) propose to use a Q-Q plot between 2.ii) and 3) or by minimizing a distance such 

as ( ) ( ) ( )
2

nCopula n nK t K t dK t − ∫ . 

 
Both approaches are presented below: 
 

   
 

 
The graphical approach shows that the Gumbel copula is the better fit. 
 
The nonparametric approach arrives at the same result.14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
14 An attached Excel ™ sheet develops the nonparametric method thoroughly. Over there we only present its result.  
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  Gumbel  Clayton Frank       

 τ      0.45835  0.45835  0.45835      

θ     1.84623  1.69245  5.02757      

     
 
    

        
   

 

     

 t   Density  Cumulative  Sample Gumbel Clayton Frank Gumbel  Clayton Frank 
 0.00001                  7                7   0.00700   0.00007       0.00002   0.00011       0.000       0.000     0.000  
 0.05001              123           130   0.13000   0.13115       0.07937   0.13513       0.000       0.003     0.000  
 0.10001                90           220   0.22000   0.22474       0.15790   0.21981       0.000       0.004     0.000  
 0.15001                80           300   0.30000   0.30415       0.23507   0.29088       0.000       0.004     0.000  
 0.20001                68           368   0.36800   0.37436       0.31043   0.35478       0.000       0.003     0.000  
 0.25001                81           449   0.44900   0.43773       0.38359   0.41418       0.000       0.004     0.001  
 0.30001                54           503   0.50300   0.49565       0.45417   0.47047       0.000       0.002     0.001  
 0.35001                56           559   0.55900   0.54903       0.52183   0.52443       0.000       0.001     0.001  
 0.40001                47           606   0.60600   0.59853       0.58623   0.57650       0.000       0.000     0.001  
 0.45001                46           652   0.65200   0.64464       0.64707   0.62692       0.000       0.000     0.001  
 0.50001                41           693   0.69300   0.68773       0.70403   0.67579       0.000       0.000     0.000  
 0.55001                35           728   0.72800   0.72811       0.75684   0.72305       0.000       0.001     0.000  
 0.60001                43           771   0.77100   0.76602       0.80519   0.76856       0.000       0.001     0.000  
 0.65001                28           799   0.79900   0.80167       0.84881   0.81204       0.000       0.002     0.000  
 0.70001                23           822   0.82200   0.83524       0.88745   0.85308       0.000       0.004     0.001  
 0.75001                31           853   0.85300   0.86687       0.92082   0.89113       0.000       0.005     0.001  
 0.80001                30           883   0.88300   0.89670       0.94868   0.92542       0.000       0.004     0.002  
 0.85001                33           916   0.91600   0.92483       0.97078   0.95495       0.000       0.003     0.002  
 0.90001                36           952   0.95200   0.95137       0.98685   0.97843       0.000       0.001     0.001  
 0.95001                26           978   0.97800   0.97640       0.99667   0.99417       0.000       0.000     0.000  
 1.00000                22        1,000   1.00000   1.00000       1.00000   1.00000       0.001       0.045     0.012  

( ) ( ) ( )
2

nCopula n nMin K t K t dK t − ∫ = 0.001  for Gumbel, 0.045 for Clayton and 0.12 for Frank. 

 
 
 
 
Below we show two VBA codes necessary for performing the nonparametric estimation 

that allows us to answer the question which is the copula right one? 
 

 

VBA Code that computes Kendall using Tau nonparametric estimation  
 

 
Function K_tau(ByVal X1 As Range, ByVal X2 As Range) As Double 
'Estimate Kendall's correlation coefficient using the usual nonparametric estimate  

( ) ( )
1

1 1 2 2
2

_ _
n

n i j i j
i j

sign X X X Xτ
−

<

   =     
∑  (1.32) 

 
Dim i As Long, j As Long, s As Long, n As Long 
 
n = X1.Rows.Count 
     
For i = 1 To n 
    For j = i To n 

( ) ( ) ( )
2

nCopula n nK t K t dK t − ∫tau Franktau Frank
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        If j > i Then 
        s = s + Sgn((X1.Cells(i, 1) - X1.Cells(j, 1)) * (X2.Cells(i, 1) - X2.Cells(j, 1))) 
        End If 
    Next 
Next 
K_tau = (Application.WorksheetFunction.Combin(n, 2) ^ -1) * s 
End Function 

 
 

 

VBA Code that computes the pseudo-observations ( )1 1{number of i j iT X X= <  such that 

1 1j iX X<  and 2 2 }j iX X<  / ( )1n −  for 1,2,..., .i n=  

 
 
Function Ts(ByVal X1 As Range, ByVal X2 As Range, i As Long) As Double 
 
Dim j As Long, s As Long, n As Long 
n = X1.Rows.Count 
    For j = 1 To n 
        If X1.Cells(j, 1) < X1.Cells(i, 1) And X2.Cells(j, 1) < X2.Cells(i, 1) Then 
            Ts = Ts + 1 
        End If 
    Next 
Ts = Ts / (n - 1) 
End Function 

 

Numerical Example 
This example shows how value a first-to-default swap. For doing this, we use Li model (Li 

(2000)). Under this model, defaults are assumed to occur for individual assets according to 
Poisson process with a deterministic intensity called hazard rate h . This means that default 

times ( )T  are exponentially distributed with mean equal to 
1
h

. Li relates the default times 

using a Gaussian (Normal) copula, we employ Gumbel copula, too. 
 
We assume that: 

• we have a portfolio of two credits ( )2n = . 

• the contract is a two-year transaction ( 2)t = , which pays one dollar if the first 
default happens during the first two years. 

• Each credit has a, constant for term of de contract, hazard rate of 0.10h = . 
• A constant interest rate of 0.10r =  
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The Pricing First-to-default Algorithm: 

For each Monte Carlo trial we do the following: 
 

• Draw uniform bivariates from chosen copula ( Gaussian, Gumbel etc.) 
• Map uniform to default times ( )T  using the inverse cumulative exponential 

distribution function given a fixed h . 
• Compute minimum default time. If it is less than n, the present value of the 

contract is .1. r Te− . 
 
Then we average many trials and compute the expected value of the contract. 
 
We examine the impact of the asset correlation on the value of the credit derivative using 

independence, perfectly correlated and using the following lineal correlation matrix: 
 
 

Lineal Correlation 
           1.000         0.629
           0.629         1.000

 
 
Our simulation of 30,000 trials produces the following results: 
 

1st-at-Default Swap 
  Price
Independence            0.302
Perfectly Correlated            0.165
Normal Copula            0.249
Gumbel Copula            0.255

 
When we assume independence or perfect correlation below analytical solution is possible: 

 

 ( )( )1 Tt r hT

T

h e
r h

− +−
+

 (1.33) 

where, in the independence case: 
.Th h n=      (1.34) 

 
in the perfectly correlated case: 

 Th h=  (1.35) 

 
 
The result of the analytical solution is following presented: 

 
Analytical Solution 

  Price
Independence            0.301
Perfectly Correlated            0.165
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Conclusion 
 
There is clear evidence that equity returns have unconditional fat tails, to wit, the 

extreme events are more probable than anticipated by normal distribution, not only in marginal 
but also in higher dimensions. This is important both for market risk models as credit risk one, 
where equity returns are used as a proxy for asset returns that follow a multivariate normal 
distribution, and, therefore, default times have a multivariate normal dependence structure as 
well. Other than normal distribution should be used both in marginal as joint distributions. To 
overcome these pitfalls, the concept of copula, its basic properties and a special class of copula 
called Archimedean are introduced. Then we expose a guide to choose both the margins and 
the Archimedean copula that better fit to data. In addition, we provide an algorithm to simulate 
random bivariate from Archimedean copula. In order to cover the gap between the theory and 
its practical implementation VBA codes are provided. Finally we show a numerical example that 
illustrates the use of the copula by pricing a first-to-default contract. 

For simplicity’s sake,  and given that the joint distribution is the major topic of this paper, 
when  we value a first-to-default contract, we obviate in marginal distribution, to use a 
different distribution to normal  one, but we employ Archimedean copula to model dependence 
structure.  

This paper is accompanied by two spreadsheets that present step by step all the practical 
applications covered. 
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Appendix A – Others Copula´s Parameters 
 

Clayton Copula’s Parameters 
B.(*) C. D. E. F. G.(**) 

2
1

τθ
τ

=
−

 

(1.36) 

1t θ− −  
(1.37) 

1.t θθ − −−  
(1.38) ( )

1

1 t θ
−

+  
(1.39) 

( )1t t
t

θ

θ

+ −
−  

(1.40) 

( )1 1
1

tθ θ
θ θ

+
− + +

(1.41) 

      (*) 0θ > . Only positive dependence. 

(**) There is not a closed form for the inverse distribution function 1
ClaytonK − , so G. will be used for obtaining  it by 

numerical root finding.  
 

Frank Copula’s Parameters 
C. D. E. F. G.(**) 

1
ln

1

te
e

θ

θ

−

−

−
−

−
(1.42) 

1 teθ

θ
−

 

(1.43) 

( )ln 1t te eθ

θ

− − −− +
−

(1.44) 
( )

1
ln

1 1

t

t

e
et e

θ

θ
θ

θ

−

−

−
−− −

(1.45) 

( )1
ln 1

1

t
t e

e t
e

θ
θ

θ θ
  −

− + −  −   
(1.46) 

      (*) θ−∞ < < ∞ . Positive and negative dependence. 

(**) There is not a closed form for the inverse distribution function 
1

FrankK −
, so G. will be used  for obtaining  it by numerical root finding.  

 
B. Frank copula has not close form that allows us to calculate theta parameter. We use 
numerical root finding for calculating it. Press                  button in the attached Excel sheet for 
performing the following VBA code: 
 

 
Private Sub CommandButton1_Click() 
 
Dim ktau As Double 
‘ Input wanted Kendall Tau τ  
 ktau = InputBox("Kendal Tau: ", "Input") 
 
‘ In ChangingCell "G4" we use formula (1.50) See Appendix B 
Range("G3").GoalSeek Goal:=ktau, ChangingCell:=Range("G4") 
 
End Sub 

 
 
 
 
 
 
 
 
 
 
 
 

tau Franktau Frank
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Appendix B – Kendall τ  revisited 
 

The Kendall Tau can be calculated both using formula (1.32) or the following one: 
 

Let X  and Y  be random variables with an Archimedean copula C  generated by ϕ , 
Kendall’s Tau of X  and Y  is given by: 
 

 
( )
( )

1

0

1 4
'

t
dt

tθ

ϕ
τ

ϕ
= + ∫  (1.47) 

 
when C is Gumbel (1.47) is given by: 
 
 

 
( )
( )

1 1

1
0 0

ln ln 1
=1+4 1 4 1

1
ln

t t t
dt dt

t
t

θ

θ
θ

τ
θ θθ −

−
= + = −

−
∫ ∫  (1.48) 

 
 
 
when C is Clayton (1.47) is given by: 

  
 

 
1 1 1

1
0 0

1
=1+4 1 4

2.
t t t

dt dt
t

θ θ

θ θ

θτ
θ θθ

− +

− −

− −
= + =

+−∫ ∫  (1.49) 

when C is Frank (1.47) is given by: 
 

 
( )( )14 1

1
D

θ

θ
τ

θ

−
= −  (1.50) 

where ( )kD x is the Debye function, given by: 

 ( )
0 1

x k

k k t

k t
D x dt

x e
=

−∫  (1.51) 

 

We use (1.50) for calculating Frank copula's τ . The integral ( )
b

a

f x dx
 
  
 
∫ is calculated using 

Riemann sums method. It approximates the integral by dividing the interval ,a b    into 

m subintervals and approximating f with a constant function on each subinterval. Riemann sum 
approximates our definite integral with: 

 
 

 ( ) ( )
1

b m
k

ka

f x dx f x x
=

≈ ∆∑∫ 15 (1.52) 

 

                                                 
15 We use a VBA code to figure out this integral. For its right working, it is necessary to contain Microsoft Script Control 1.0 as a reference in VBA module. If 
Microsoft Script Control 1.0  is missing you could download from http://www.microsoft.com/downloads/details.aspx?FamilyId=D7E31492-2595-
49E6-8C02-1426FEC693AC&displaylang=en  



Which Archimedean Copula is the right one?                                                                             Mario Melchiori 

22 

 

Appendix C - Using Simtools features in VBA programs.  
 

For performing Monte Carlo Simulation we use a freeware called Simtools. For its right 
working, it is necessary to attach Simtools.xla as a reference in VBA module, by applying the 
Tools: References menu command in the Visual Basic Editor and checking Simtools.xla as an 
available reference. More information about Simtools click here . 

Appendix D – Tail dependence. 
 

An example can be useful to visualize the issue.  
 
We assume: 
 

• Kendall Tau τ = 0.45835. 
• ρ  = 0.65937. 16 
• Gumbel copula (1.12) and Gaussian one17 
• Use (1.19) to calculate θ . 

 
 

Upper Tail Dependence 
Gumbel Copula 

τ  0.45835 
θ  1.84623  

1u →  0.99000 0.99250 0.99500 0.99750 0.99900 0.99950 0.99990 0.99995 

( ),GumbelC u u  0.98548 0.98910 0.99273 0.99636 0.99854 0.99927 0.99985 0.99993 

upperλ (1.5) 0.548 0.547 0.546 0.545 0.545 0.545 0.544 0.544 
         

Gaussian Copula 
ρ  0.65937  

1u →  0.99000 0.99250 0.99500 0.99750 0.99900 0.99950 0.99990 0.99995 

( ),GaussianC u u 0.98232 0.98661 0.99097 0.99541 0.99813 0.99905 0.99981 0.99990 

upperλ (1.5) 0.232 0.215 0.194 0.163 0.129 0.109 0.074 0.063 

         

Lower Tail Dependence 

Gumbel Copula 

τ  0.45835 
θ  1.84623  

                                                 

16 We use the following relationship: sin
2ij ij

πρ τ =  
 

, ( )2
arcsinij ijτ ρ

π
=  

17 ( ) ( ) ( )( )1 1, ; ,GaussianC u v u vρ − −= Φ Φ Φ  , where Φ denotes the joint distribution function of the bivariate 

standard normal distribution function with linear correlation ρ , and 1−Φ  denotes the inverse of the distribution 

function of the univariate standard normal distribution. In Excel language ( )NormSInv uΦ = . For 1−Φ a  VBA code 

is available here. 
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0u →  0.01000 0.00750 0.00500 0.00250 0.00100 0.00050 0.00010 0.00005 

( ),GumbelC u u  0.00123 0.00081 0.00045 0.00016 0.00004 0.00002 0.00000 0.00000 

lowerλ (1.8) 0.123 0.108 0.089 0.065 0.043 0.031 0.015 0.011 
         

Gaussian Copula 
ρ  0.65937  

0u →  0.01000 0.00750 0.00500 0.00250 0.00100 0.00050 0.00010 0.00005 

( ),GaussianC u u 0.00232 0.00161 0.00097 0.00041 0.00013 0.00005 0.00001 0.00000 

lowerλ (1.8) 0.232 0.215 0.194 0.163 0.129 0.109 0.074 0.063 
 
In the Gumbel copula’s case when 1u →  the tail upper dependence changes slightly. In 

Gaussian copula’s case the upper tail dependence tends to zero.  
 
When  0u →  the lower tail dependence tends to zero for Gaussian copula and Gumbel 

one. So that, our example suggests that Gumbel copula has upper tail dependence but does 
not has lower tail one, whereas Gaussian copula does has neither. 

 
The formulae for calculating the upper tail dependence from Gumbel copula is: 

  
1

2 2 θ
 
 
 −  (1.53) 

 
in this case: 

 
1

1.846232 2 0.5444
 
 
 − =  (1.54) 

 


