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Chapter 1

Value-at-Risk

1.1. HISTORY

The term “value-at-risk” (VaR) did not enter the financial lexicon until the early
1990s, but the origins of VaR measures go further back. These can be traced to
capital requirements for US securities firms of the early 20th century, starting with
an informal capital test the New York Stock Exchange (NYSE) first applied to
member firms around 1922.

REGULATORY VAR MEASURES

The original NYSE rule1 required firms to hold capital equal to 10% of assets
comprising proprietary positions and customer receivables. By 1929, this had
developed into a requirement that firms hold capital equal to:

• 5% of customer debits;
• 10% (minimum) on proprietary holdings in government of municipal bonds;
• 30% on proprietary holdings in other liquid securities; and
• 100% on proprietary holdings in all other securities.

Over time, regulators took over responsibility for setting capital requirements.
In 1975, the US Securities and Exchange Commission (SEC) established a Uniform
Net Capital Rule (UNCR) for US broker-dealers trading non-exempt securities.
This included a system of “haircuts” that were applied to a firm’s capital as a
safeguard against market losses that might arise during the time it would take to

1See Dale (1996), pp. 60–61 and Molinari and Kibler (1983), footnote 41.

13



P1:

December 17, 2002 14:14 AP/Holton Holton-Textures-C01

14 Value-at-Risk

liquidate positions. Financial assets were divided into 12 categories such as gov-
ernment debt, corporate debt, convertible securities, and preferred stock. Some of
these were further broken down into subcategories primarily according to maturity.
To reflect hedging effects, long and short positions were netted within subcate-
gories, but only limited netting was permitted across subcategories. An additional
haircut was applied to any concentrated position in a single asset.

Volatility in US interest rates motivated the SEC to update these haircuts in
1980. The new haircuts were based upon a statistical analysis of historical market
data. They were intended to reflect a .95-quantile of the amount of money a firm
might lose over a 1-month liquidation period.2 Although crude, the SEC’s system
of haircuts was a VaR measure.

Later, additional regulatory VaR measures were implemented for banks or se-
curities firms, including:

• the UK Securities and Futures Authority 1992 “portfolio” VaR measure;
• Europe’s 1993 Capital Adequacy Directive (CAD) “building-block” VaR

measure; and
• the Basle Committee’s3 1996 VaR measure based largely upon the CAD

building-block measure.

In 1996, the Basle Committee approved the limited use of proprietary VaR mea-
sures for calculating bank capital requirements. In this and other ways, regulatory
initiatives helped motivate the development of proprietary VaR measures.

PROPRIETARY VAR MEASURES

Tracing the historical development of proprietary VaR measures is difficult
because they were used by firms for internal purposes. They were not published
and were rarely mentioned in the literature. One interesting document is a letter
from Stephen C. Francis (1985) of Fischer, Francis, Trees & Watts to the Federal
Reserve Bank of New York. He indicates that their proprietary VaR measure was
similar to the SEC’s UNCR but employed more asset categories, including 27
categories for cash market US Treasuries alone. He notes:

2See Dale (1996), p. 78.
3The Basle Committee on Banking Supervision is a standing committee comprising representa-

tives from central banks and regulatory authorities. Over time, the focus of the committee has evolved,
embracing initiatives designed to define roles of regulators in cross-jurisdictional situations; ensure
that international banks or bank holding companies do not escape comprehensive supervision by some
“home” regulatory authority; and promote uniform capital requirements so banks from different coun-
tries may compete with one another on a “level playing field.” Although the Basle Committee’s recom-
mendations lack force of law, G-10 countries are implicitly bound to implement its recommendations
as national laws.
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We find no difficulty utilizing on an essentially manual basis the larger number of
categories, and indeed believe it necessary to capturing accurately our gross and net risk
exposures.

Working at Bankers Trust, Garbade (1986) describes sophisticated VaR mea-
sures for fixed income markets that employed linear and principal component
remappings to simplify computations. These may have been influenced by, but
were different from, an internal VaR measure Bankers Trust implemented around
1983 for use with its risk-adjusted return on capital (RAROC) system of internal
capital allocation.

Garbade today recollects4 efforts within Bankers Trust to improve existing VaR
measures following the stock market crash of 1987. During the crash, Treasury
interest rates fell sharply while stock prices plummeted. Such correlated market
moves are often observed during periods of market turmoil. They have motivated
suggestions that correlations become more extreme during periods of elevated
market volatility. Within Bankers Trust, there were several efforts to model this
phenomena with mixed normal distributions. These comprised two joint-normal
distributions. One was likely to be drawn from and had modest standard deviations
and correlations. The other was less likely to be drawn from and had more extreme
standard deviations and correlations. Using time-series methods available at the
time, the researchers were unable to fit a reasonable model to available market data.
They concluded that their inability to do so indicated a significant shortcoming of
VaR measures then in use.

At about the same time, Chase Manhattan Bank was developing a Monte Carlo
based VaR measure for use with its return on risk-adjusted capital (RORAC) inter-
nal capital allocation system. Citibank was implementing another VaR measure,
also for capital allocation, which measured what the bank referred to as “potential
loss amount” or PLA.5

A 1993 survey conducted by Price Waterhouse for the Group of 306 found that,
at that time, among 80 responding derivatives dealers, 30% were using VaR to
support market risk limits. Another 10% planned to do so.

PORTFOLIO THEORY

Directly or indirectly, regulatory and proprietary VaR measures were influ-
enced by portfolio theory. Markowitz (1952) and Roy (1952) independently pub-
lished VaR measures to support portfolio optimization. In 1952, processing power
was inadequate to support practical use of such schemes, but Markowitz’s ideas

4Personal correspondence with the author.
5These VaR measures are described by Chew (1993).
6Founded in 1978, the Group of 30 is a nonprofit organization of senior executives, regulators,

and academics. Through meetings and publications, it seeks to deepen understanding of international
economic and financial issues. Results of the Price Waterhouse study are reported in Group of 30 (1994).
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spawned work by more theoretically inclined researchers. Papers by Tobin (1958),
Treynor (1961), Sharpe (1963, 1964), Lintner (1965), and Mossin (1966) con-
tributed to the emerging portfolio theory. The VaR measures they employed were
best suited for equity portfolios. There were few alternative asset categories, and
applying VaR to these would have raised a number of modeling issues. Real estate
cannot be marked to market with any frequency, making VaR inapplicable. Ap-
plying VaR to either debt instruments or futures contracts entails modeling term
structures. Also, debt instruments raise issues of credit spreads. Futures that were
traded at the time were primarily for agricultural products, which raise seasonal-
ity issues. Schrock (1971) and Dusak (1973) describe simple VaR measures for
futures portfolios, but neither addresses term structure or seasonality issues.

Lietaer (1971) describes a practical VaR measure for foreign exchange risk. He
wrote during the waning days of fixed exchange rates when risk manifested itself
as currency devaluations. Since World War II, most currencies had devalued at
some point; many had done so several times. Governments were secretive about
planned devaluations, so corporations maintained ongoing hedges. Lietaer (1971)
proposes a sophisticated procedure for optimizing such hedges. It incorporates a
VaR measure with a variance of market value VaR metric. It assumes devaluations
occur randomly, with the conditional magnitude of a devaluation being normally
distributed. Computations are simplified using a modification of Sharpe’s (1963)
diagonal model. Lietaer’s work may be the first instance of the Monte Carlo method
being employed in a VaR measure.

EMERGENCE OF RISK MANAGEMENT

In 1990, risk management was novel. Many financial firms lacked an inde-
pendent risk management function. This concept was practically unheard of in
nonfinancial firms. The term “risk management” was not new. It had long been
used to describe techniques for addressing property and casualty contingencies.
Doherty (2000) traces such usage to the 1960s and 1970s when organizations were
exploring alternatives to insurance, including:

• risk reduction through safety, quality control, and hazard education; and
• alternative risk financing, including self-insurance and captive insurance.

Such techniques, together with traditional insurance, were collectively referred to
as risk management.

More recently, derivative dealers had been promoting “risk management” as the
use of derivatives to hedge or customize market-risk exposures. For this reason,
derivative instruments were sometimes called “risk management products.”

The new “risk management” that evolved during the 1990s is different from
either of the earlier forms. It tends to view derivatives as a problem as much as
a solution. It focuses on reporting, oversight, and segregation of duties within
organizations.
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On January 30, 1992, Gerald Corrigan, President of the New York Federal
Reserve, addressed the New York Bankers Association. His comments set a tone
for the new risk management:7

. . . the interest rate swap market now totals several trillion dollars. Given the sheer
size of the market, I have to ask myself how it is possible that so many holders of fixed or
variable rate obligations want to shift those obligations from one form to the other. Since
I have a great deal of difficulty in answering that question, I then have to ask myself
whether some of the specific purposes for which swaps are now being used may be
quite at odds with an appropriately conservative view of the purpose of a swap, thereby
introducing new elements of risk or distortion into the marketplace—including possible
distortions to the balance sheets and income statements of financial and nonfinancial
institutions alike.

I hope this sounds like a warning, because it is. Off-balance sheet activities have a
role, but they must be managed and controlled carefully, and they must be understood
by top management as well as by traders and rocket scientists.

With concerns about derivatives increasing, Paul Volker, Chairman of the Group
of 30, approached Dennis Weatherstone, Chairman of JP Morgan, and asked him to
lead a study of derivatives industry practices. Weatherstone formed an international
steering committee and a working group of senior managers from derivatives
dealers; end users; and related legal, accounting, and academic disciplines. They
produced a 68-page report, which the Group of 30 published in July 1993. Entitled
Derivatives: Practices and Principles, it has come to be known as the G-30 Report.
It describes then-current derivatives use by dealers and end-users. The heart of the
study is a set of 20 recommendations to help dealers and end-users manage their
derivatives activities. Topics addressed include:

• the role of boards and senior management,
• the implementation of independent risk management functions, and
• the various risks that derivatives transactions entail.

With regard to the market risk faced by derivatives dealers, the report recom-
mends that portfolios be marked-to-market daily, and that risk be assessed with
both VaR and stress testing. It recommends that end-users of derivatives adopt
similar practices as appropriate for their own needs.

Although the G-30 Report focuses on derivatives, most of its recommendations
are applicable to the risks associated with other traded instruments. For this reason,
the report largely came to define the new risk management of the 1990s. The report
is also interesting, as it seems to be the first published document to use the term
“value-at-risk.” Alternative names, such as “capital-at-risk” and “dollars-at-risk”
were also used for a time and appeared earlier in the literature.8

7This incident is documented in Shirreff (1992). See Corrigan (1992) for a full text of the speech.
8The name “dollars-at-risk” appears as early as Mark (1991), and “capital-at-risk” as early as

Wilson (1992).
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Still, VaR remained a specialized tool known primarily to risk managers at finan-
cial firms. This changed in 1994 when JP Morgan introduced its free RiskMetrics
service.

RISKMETRICS

During the late 1980s, JP Morgan developed a firm-wide VaR system. This
modeled several hundred key factors. A covariance matrix was updated quarterly
from historical data. Each day, trading units would report by e-mail their positions’
deltas with respect to each of the key factors. These were aggregated to express the
combined portfolio’s value as a linear polynomial of the risk factors. From this,
the standard deviation of portfolio value was calculated. Various VaR metrics were
employed. One of these was 1-day 95% USD VaR, which was calculated using an
assumption that the portfolio’s value was normally distributed.

With this VaR measure, JP Morgan replaced a cumbersome system of notional
market risk limits with a simple system of VaR limits. Starting in 1990, VaR
numbers were combined with P&L’s in a report for each day’s 4:15 PM Treasury
meeting in New York. Those reports, with comments from the Treasury Group,
were forwarded to Chairman Weatherstone.

One of the architects of the new VaR measure was Till Guldimann. His career
with JP Morgan had positioned him to help develop and then promote the VaR
measure within the firm. During the mid 1980s, he was responsible for the firm’s
asset/liability analysis. Working with other professionals, he developed concepts
that would be used in the VaR measure. Later as chairman of the firm’s market
risk committee, he promoted the VaR measure internally. As fate would have it,
Guldimann’s next position placed him in a role to promote the VaR measure outside
the firm.

In 1990 Guldimann took responsibility for Global Research, overseeing re-
search activities to support marketing to institutional clients. In that capacity he
managed an annual research conference for clients. In 1993, risk management
was the conference theme. Guldimann gave the keynote address and arranged for
a demonstration of JP Morgan’s VaR system. The demonstration generated con-
siderable interest. Clients asked if they might purchase or lease the system. Since
JP Morgan was not a software vendor, they were disinclined to comply. Guldimann
proposed an alternative. The firm would provide clients with the means to imple-
ment their own systems. JP Morgan would publish a methodology, distribute the
necessary covariance matrix, and encourage software vendors to develop compat-
ible software.

Guldimann formed a small team to develop something for the next year’s
research conference. The service they developed was called RiskMetrics.
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It comprised a detailed technical document as well as a covariance matrix for
several hundred key factors, which was updated daily. Both were distributed with-
out charge over the Internet. The service was rolled out with considerable fanfare in
October 1994. A public relations firm placed ads and articles in the financial press.
Representatives of JP Morgan went on a multi-city tour to promote the service.
Software vendors, who had received advance notice, started promoting compatible
software.9

PUBLICIZED LOSSES

Timing for the release of RiskMetrics was excellent, as it came during a period
of publicized financial losses. In February 1993, Japan’s Showa Shell Sekiyu oil
company reported a USD 1050MM loss from speculating on exchange rates. In
December of that year, MG Refining and Marketing, a US subsidiary of Germany’s
Metallgesellschaft AG, reported a loss of USD 1300MM from failed hedging of
long-dated oil supply commitments.

In 1994, there was a litany of losses. China’s state sponsored CITIC conglom-
erate and Chile’s state-owned Codelco copper corporation lost USD 40MM and
USD 207MM trading metals on the London Metals Exchange (LME). US compa-
nies Gibson Greetings, Mead, Proctor & Gamble, and Air Products and Chemicals
all reported losses from differential swaps transacted with Bankers Trust. Japan’s
Kashima Oil lost USD 1500MM speculating on exchange rates. California’s
Orange County announced losses from repos and other transactions that would
total USD 1700MM. These are just a few of the losses publicized during 1994.

The litany continued into 1995. A notable example is Japan’s Daiwa Bank. One
of its US-based bond traders had secretly accumulated losses of USD 1100MM
over a 10 year period. What grabbed the world’s attention, though, was the dramatic
failure of Britain’s Barings PLC in February 1995. Nick Leeson, a young trader
based at its Singapore office, lost USD 1400MM from unauthorized Nikkei futures
and options positions. Barings had been founded in 1762. It had financed Britain’s
participation in the Napoleonic wars. It had financed America’s Louisiana purchase
and construction of the Erie Canal. Following its collapse, Barings was sold to
Dutch bank ING for the price of one GBP.

By the mid-1990s, regulatory initiatives, concerns about OTC derivatives, the
release of RiskMetrics, and publicized losses had created a flurry of interest in the
new risk management and related techniques. Today, “value-at-risk” is not quite a
household word, but it is familiar to most professionals working in wholesale
financial, energy, and commodities markets.

9The above discussion of RiskMetrics is based upon Guldimann (2000), the author’s own recol-
lections, and private correspondence with Till Guldimann.
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1.2. MEASURES

A measure is an operation that assigns a value to something. There are measures
of length, temperature, mass, time, speed, strength, aptitude, etc. Assigned values
are usually numbers, but can be elements of any ordered set. Shoe widths are some-
times assigned values from the ordered set {A, B, C, D, E}. We distinguish between:

• a measure, which is the operation that assigns the value, and
• a metric, which is an interpretation of the value.

A highway patrolman points a Doppler radar at an approaching automobile.
The radar transmits microwaves, which are reflected off the auto and return to the
radar. By comparing the wavelength of the transmitted microwaves to that of the
reflected microwaves, the radar generates a number, which it displays. This entire
process is a measure. An interpretation of that number—speed in miles/hour—is
a metric.

Questionnaires are mailed to a diverse sample of 5000 households throughout
the United States. They ask questions relating to:

1. business conditions in the household’s area;
2. anticipated business conditions in 6 months;
3. job availability in the area;
4. anticipated job availability in 6 months; and
5. anticipated family income in 6 months.

Approximately 3500 households respond. Responses are seasonally adjusted.
A statistical formula is applied to the set of responses to produce a number. This
process is a measure. The Conference Board interprets the number as “consumer
confidence,” a unitless quantity. The interpretation is a metric.

Let’s consider our first exercise. Solutions for all exercises are available online
at http://www.contingencyanalysis.com.

EXERCISES

1.1 Describe a measure and corresponding metric that might be used in weather
forecasting.

1.3. RISK MEASURES

Risk has two components:

• exposure, and
• uncertainty.
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If we swim in shark-infested waters, we are exposed to bodily injury or death from
a shark attack. We are uncertain because we don’t know if we will be attacked.
Being both exposed and uncertain, we face risk.

A risk measure is a measure that is applied to risks. A risk metric is an
interpretation of such a measure. Risk metrics typically take one of three forms:

• those that quantify exposure;
• those that quantify uncertainty;
• those that quantify exposure and uncertainty in some combined manner.

Probability of rain is a risk metric that only quantifies uncertainty. It does not
address our exposure to rain, which depends upon whether or not we have outdoor
plans.

Credit exposure is a risk metric that only quantifies exposure. It indicates how
much money we might lose if a counterparty were to default. It says nothing about
our uncertainty as to whether or not the counterparty will default.

Risk metrics that quantify uncertainty—either alone or in combination with
exposure—are usually probabilistic. Many summarize risk with a parameter of
some probability distribution. Standard deviation of tomorrow’s spot price of cop-
per is a risk metric that quantifies uncertainty. It does so with a standard deviation.
Average highway deaths per passenger-mile is a risk metric that quantifies uncer-
tainty and exposure. We may interpret it as reflecting the mean of a probability
distribution.

EXERCISES

1.2 Give an example of a situation that entails uncertainty but not exposure, and
hence no risk.

1.3 Give an example of a situation that entails exposure but not uncertainty, and
hence no risk.

1.4 In our example of the deaths per passenger-mile risk metric, for what random
variable’s probability distribution may we interpret it as reflecting a mean?

1.5 Give three examples of risk metrics that quantify financial risks. Choose one
that quantifies exposure. Choose one that quantifies uncertainty. Choose one
that quantifies uncertainty combined with exposure.

1.4. MARKET RISK

Business activities entail a variety of risks. For convenience, we distinguish
between different categories of risk: market risk, credit risk, liquidity risk, etc.
Although such categorization is convenient, it is only informal. Usage and defi-
nitions vary. Boundaries between categories are blurred. A loss due to widening
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credit spreads may reasonably be called a market loss or a credit loss, so market
risk and credit risk overlap. Liquidity risk compounds other risks, such as market
risk and credit risk. It cannot be divorced from the risks it compounds.

For our purposes, it is convenient to distinguish between market risk and busi-
ness risk. Market risk is exposure to the uncertain market value of a portfolio.

A trader holds a portfolio of commodity forwards. She knows what its market
value is today, but she is uncertain as to its market value a week from today. She
faces market risk. Business risk is exposure to uncertainty in economic value that
cannot be marked-to-market. The distinction between market risk and business
risk parallels the distinction between market-value accounting and book-value ac-
counting. Suppose a New England electricity wholesaler is long a forward contract
for on-peak electricity delivered over the next 12 months. There is an active for-
ward market for such electricity, so the contract can be marked to market daily.
Daily profits and losses on the contract reflect market risk. Suppose the firm also
owns a power plant with an expected useful life of 30 years. Power plants change
hands infrequently, and electricity forward curves don’t exist out to 30 years. The
plant cannot be marked to market on a regular basis. In the absence of market
values, market risk is not a meaningful notion. Uncertainty in the economic value
of the power plant represents business risk.

Most risk metrics apply to a specific category of risks. There are market risk
measures, credit risk measures, etc. Note that we do not categorize risk measures
according to the specific operations those measures entail. We characterize them
according to the risk metrics they are intended to support.

Gamma—as used by options traders—is a metric of market risk. There are
various operations by which we might calculate gamma. We might:

• use a closed form solution related to the Black-Scholes formula;
• value the portfolio at three different underlier values and interpolate a quadra-

tic polynomial; etc.

Each method defines a risk measure. We categorize them all as measures of
gamma, not based upon the specific operations that define them, but simply because
they all support gamma as a risk metric.

EXERCISES

1.6 Describe two different risk measures, both of which support duration as a risk
metric.

1.5. VALUE-AT-RISK

Value-at-risk (VaR) is a category of market risk measures. As with any category
of risk measures, we define VaR in terms of the risk metrics the measure supports.
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Suppose a portfolio were to remain untraded for a certain period—say from the
current time 0 to some future time 1. The portfolio’s market value 0p at the start of
the period is known. Its market value 1P at the end of the period is unknown. It is a
random variable. As a random variable, we may assign it a probability distribution
conditional upon information available at time 0. We might quantify the portfolio’s
market risk with some real-valued parameter of that conditional distribution.

Formally, a VaR metric is a real-valued function of:

• the distribution of 1P conditional on information available at time 0; and
• the portfolio’s current value 0p.

Standard deviation of 1P , conditional on information available at time 0, is a
VaR metric:

0std(1P). [1.1]

Conditional standard deviation of a portfolio’s simple return 1Z is a VaR metric:

0std(1Z ) = 0std

( 1P − 0p
0p

)
=

0std(1P − 0p)
0p

=
0std(1P)

0p
. [1.2]

If we define portfolio loss as

1L = 0p − 1P, [1.3]

then the conditional standard deviation of 1L is also a VaR metric:

0std(1L) = 0std(0p − 1P) = 0std(1P). [1.4]

Quantiles of portfolio loss make intuitively appealing VaR metrics. If the con-
ditional .95-quantile of 1L is GBP 2.6MM, then such a portfolio can be expected
to lose less than GBP 2.6MM on 19 days out of 20.

The functions that define VaR metrics can be fairly elaborate. An expected tail
loss (ETL) VaR metric indicates a portfolio’s expected loss conditional on that loss
exceeding some specified quantile of loss.10

To fully specify a VaR metric, we must indicate three things:

• the period of time—1 day, 2 weeks, 1 month, etc.—between time 0 and time
1; this is the horizon;

• the function of 0p and the conditional distribution of 1P;
• the currency in which 0p and 1P are denominated; this is the base currency.

Note that we always measure time in units equal to the length of the VaR
horizon, so the VaR horizon always starts at time 0 and ends at time 1. We adopt
a convention for naming VaR metrics:

1. The metric’s name is given as the horizon, function, and currency, in that
order, followed by “VaR.”

10See Dowd (2002) for more on ETL metrics.
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2. If the horizon is expressed in days without qualification, these are
understood to be trading days.

3. If the function is a quantile of loss, it is indicated simply as a percentage.

For example, we may speak of a portfolio’s:

• 1-day standard deviation of simple return USD VaR,
• 2-week 95% JPY VaR, or
• 1-week 90% ETL GBP VaR, etc.

Recall that risk measures are categorized according to the metrics they support.
Having defined VaR metrics, we define VaR as the category of risk measures that
support VaR metrics. If a risk measure supports a metric that is a VaR metric, then
the measure is a VaR measure. If we apply a VaR measure to a portfolio, the value
obtained is called a VaR measurement or, less precisely, the portfolio’s VaR.

A VaR measure is just an operation—some set of computations—designed to
support a VaR metric. To design a VaR measure, we generally have some financial
model in mind. Models take many forms, embracing certain assumptions and
drawing on fields such as portfolio theory, financial engineering, or time series
analysis. Such models are the assumptions and logic that motivate a VaR measure.
We call them VaR models.

Finally, to use a VaR measure, we must implement it. We must secure necessary
inputs, code the measure as software, and install the software on computers and
related hardware. The result is a VaR implementation.

EXERCISES

1.7 Which of the following represent VaR metrics:
1. conditional variance of a portfolio’s USD market value 1 week from

today;
2. conditional standard deviation of a portfolio’s JPY net cash flow over the

next month.
3. beta, as defined by Sharpe’s (1964) Capital Asset Pricing Model, conditional

on information available at time 0.

1.8 Using the naming convention indicated in the text, name the following VaR
metrics:
1. the conditional standard deviation of a portfolio’s market value, measured

in AUD, 1 week from today;
2. the conditional standard deviation of a portfolio’s USD simple return over

the next 3 trading days;
3. the conditional 99% quantile of a portfolio’s loss, measured in GBP, over

the next day.
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1.9 Consider a 1-day standard deviation of simple return JPY VaR metric. A
portfolio’s return is a unitless quantity; so is its conditional standard deviation
of return. Must we specify a base currency (JPY) for this VaR metric? Couldn’t
we just call it a 1-day standard deviation of simple return VaR metric?

1.6. RISK LIMITS

VaR measures are used for a variety of tasks, including oversight, capital cal-
culations, and portfolio optimization. The quintessential application is VaR limits.

Risk limits are a device for authorizing specific forms of risk taking. A pension
fund hires an outside investment manager to invest some of its assets in intermediate
corporate bonds. The fund wants the manager to take risk on its behalf, but it has
a specific form of risk in mind. It doesn’t want the manager investing in equities,
precious metals, or cocoa futures. It communicates its intentions with contractually
binding investment guidelines. These specify acceptable investments. They also
specify risk limits, such as requirements that:

• the portfolio’s duration always be less than 7 years;
• all bonds have a credit rating of BBB or better.

The first is an example of a market risk limit; the second of a credit risk limit.
When an organization authorizes a risk limit for risk-taking activities, it must

specify three things:

1. a risk metric,
2. a risk measure that supports the metric, and
3. the limit—a value for the risk metric that is not to be exceeded.

At any point in time, a limit’s utilization is the actual amount of risk being
taken, as quantified by the risk measure. Any instance where utilization exceeds
the risk limit is called a limit violation.

A bank’s corporate lending department is authorized to lend to a specific coun-
terparty subject to a credit exposure limit of GBP 10MM. For this purpose, the
bank measures credit exposure as the sum amount of outstanding loans and loan
commitments to the counterparty. The lending department lends the counterparty
GBP 8MM, causing its utilization of the limit to be GBP 8MM. Since the limit is
GBP 10MM, the lending department has remaining authority to lend up to GBP
2MM to the counterparty.

A metals trading firm authorizes a trader to take gold price risk subject to a 2000
troy ounce delta limit. Using a specified measure of delta, his portfolio’s delta is
calculated at 4:30 PM each trading day. Utilization is calculated as the absolute
value of the portfolio’s delta.
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MARKET RISK LIMITS

For monitoring market risk, many organizations segment portfolios in some
manner. They may do so by trader and trading desk. Commodities trading firms
may do so by delivery point and geographic region. A hierarchy of market risk
limits is typically specified to parallel such segmentation, with each segment of
the portfolio having its own limits. Limits generally increase in size as you move
up the hierarchy—from traders to desks to the overall portfolio; or from individual
delivery points to geographic regions to the overall portfolio.

Exhibit 1.1 illustrates how a hierarchy of market risk limits might be imple-
mented for a trading unit. A risk metric is selected, and risk limits are specified
based upon this. Each limit is depicted with a cylinder. The height of the cylinder
corresponds to the size of the limit. The trading unit has three trading desks, each
with its own limit. There are also limits for individual traders, but only those for
trading desk A are shown. The extent to which each cylinder is shaded black cor-
responds to the utilization of that limit. Trader A3 is utilizing almost all his limit.
Trader A4 is utilizing little of hers.

Exhibit 1.1 A hierarchy of market risk limits is illustrated for a hypothetical trading unit. A
risk metric—VaR, delta, etc.—is chosen. Risk limits are specified for the portfolio and sub-
portfolios based upon this. The limits are depicted with cylinders. The height of each cylinder
corresponds to the size of the limit. The degree to which it is shaded black indicates current
utilization of the limit. Fractions next to each cylinder indicate utilization and limit size. Units
are not indicated here, as these will depend upon the particular risk metric used. Individual
traders have limits, but only those for traders on desk A are indicated in the exhibit.
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For such a hierarchy of risk limits to work, an organization must have a suitable
risk measure to calculate utilization of each risk limit on an ongoing basis. Below,
we describe three types of market risk limits, culminating with VaR limits.

STOP-LOSS LIMITS

A stop-loss limit indicates an amount of money that a portfolio’s single-period
market loss should not exceed. Various periods may be used, and sometimes mul-
tiple stop-loss limits are specified for different periods. A trader might be given
the following stop-loss limits:

• 1-day EUR 0.5MM,
• 1-week EUR 1.0MM,
• 1-month EUR 3.0MM.

A limit violation occurs whenever a portfolio’s single-period market loss ex-
ceeds a stop-loss limit. In such an event, a trader is usually required to hedge
material exposures—hence the name stop-loss limit.

Stop-loss limits have shortcomings. Single-period market loss is a retrospective
risk metric. It only indicates risk after the financial consequences of that risk have
been realized. Also, it provides an inconsistent indication of risk. If a portfolio
suffers a large loss over a given period, this is a clear indication of risk. If the
portfolio does not suffer a large loss, this does not indicate an absence of risk!
Another problem is that traders cannot control the specific losses they incur, so it is
difficult to hold traders accountable for isolated stop-loss limit violations. However,
the existence of stop-loss limits does motivate traders to manage portfolios in such
a manner as to avoid limit violations.

Despite their shortcomings, stop-loss limits are simple and convenient to use.
Non-specialists easily understand stop-loss limits. A single risk metric can be ap-
plied consistently across an entire hierarchy of limits. Calculating utilization is
as simple as marking a portfolio to market. Finally, because portfolio loss en-
compasses all sources of market risk, just one or a handful of limits is required
for each portfolio or sub-portfolio. For these reasons, stop-loss limits are widely
implemented by trading organizations.

EXPOSURE LIMITS

Exposure limits are limits based upon an exposure risk metric. For limiting
market risk, common metrics include: duration, convexity, delta, gamma, and
vega. Crude exposure limits may also be based upon notional amounts. These are
called notional limits. Many exposure metrics can take on positive or negative
values, so utilization may be defined as the absolute value of exposure.
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Exposure limits address many of the shortcomings of stop-loss limits. They
are prospective. Exposure limits indicate risk before its financial consequences are
realized. Also, exposure metrics provide a reasonably consistent indication of risk.
For the most part, traders can be held accountable for exposure limit violations
because they largely control their portfolio’s exposures.There are rare exceptions.
A sudden market rise may cause a positive-gamma portfolio’s delta to increase,
resulting in an unintended delta limit violation.

For the most part, utilization of exposure limits is easy to calculate. There may
be analytic formulas for certain exposure metrics. At worst, a portfolio must be
valued under multiple market scenarios with some form of interpolation applied
to assess exposure.

Exposure limits pose a number of problems. A hierarchy of exposure limits
will depend upon numerous risk metrics. Not only is delta different from gamma,
but crude oil delta is different from natural gas delta. Because a portfolio or sub-
portfolio can have multiple exposures, it will require multiple exposure limits. An
equity derivatives trader might have delta, gamma, and vega limits for each of
1000 equities—for a total of 3000 exposure limits.

Exposure limits are ineffective in contexts where spread trading, cross-hedging,
or similar strategies minimize risk by taking offsetting positions in correlated as-
sets. Large exposure limits are required in order to accommodate each of the offset-
ting positions. Because they cannot ensure reasonable hedging, the exposure limits
allow for net risk far in excess of that required by the intended hedging strategy.

With the exception of notional limits, non-specialists do not easily understand
exposure limits. It is difficult to know what might be a reasonable delta limit for
an electricity trading desk if you don’t have both:

• a technical understanding of what delta means, and
• practical familiarity with the typical size of market fluctuations in the

electricity market.

This, and the sheer number of exposure limits that are often required, makes it
difficult for managers to establish effective hierarchies of exposure limits.

VAR LIMITS

VaR limits combine many of the advantages of exposure limits and stop-loss
limits. Like exposure metrics, VaR metrics are prospective. They indicate risk
before its economic consequences are realized. Also like exposure metrics, VaR
metrics provide a reasonably consistent indication of risk. Finally, as long as uti-
lization is calculated for traders in a timely and ongoing manner, it is reasonable
to hold them accountable for limit violations. As with exposure limits, there are
rare exceptions. Consider a trader with a negative gamma position. While she is
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responsible for hedging the position on an ongoing basis, it is possible that a sudden
move in the underlier will cause an unanticipated spike in VaR.

As with stop-loss limits, non-specialists intuitively understand VaR metrics. If
a portfolio has 1-day 90% USD VaR of 7.5MM, a non-specialist understands that
such a portfolio will lose less than USD 7.5MM an average of 9 days out of 10.

With VaR limits, a single metric, such as 1-day 99% USD VaR, can be applied
consistently across an entire hierarchy of limits. In theory, VaR encompasses all
sources of market risk. Just one limit is required for each portfolio or sub-portfolio.

VaR aggregates across assets. Depending upon the sophistication of a VaR
measure, it can reflect even the most complex hedging or diversification effects.
Accordingly, VaR limits are perfect for limiting risk with spread trading, cross-
hedging, or similar trading strategies.

VaR limits have one significant drawback: utilization may be computationally
expensive to calculate. For many portfolios, VaR is easy to calculate. It can often
be done in real time on a single processor. For other portfolios, it may take minutes
or hours to calculate, even with parallel processors.

COMPARISON

Exhibit 1.2 summarizes the strengths and weakness of stop-loss, exposure, and
VaR limits. VaR limits are attractive in almost all respects. Their only significant
drawback is the computational expense of calculating VaR for certain portfolios.

Characteristic
Stop-loss

Limits
Exposure

Limits
VaR

Limits

A single metric applies across a hierarchy of limits.
One or few limits required per portfolio or sub-portfolio.

Can aggregate across exposures.
Easily understood by non-specialists.

Addresses risk prospectively.
Utilization provides a consistent indication of risk.

Traders can be held accountable for limit violations.
Utilization is easy to calculate.

Exhibit 1.2 Characteristics of stop-loss, exposure, and VaR limits are compared. See the
text for clarifications of specific issues.

1.7. EXAMPLES

Let’s consider some examples of VaR measures. These will introduce basic
concepts and standard notation. They will also illustrate a framework for thinking
about VaR measures, which we shall formalize in Section 1.8.
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THE LEAVENS VAR MEASURE

Leavens (1945) published a paper describing the benefits of diversification. He
accompanied his explanations with a simple example. This is the earliest known
published VaR measure.

Measure time t in appropriate units. Let time t = 0 be the current time. Leavens
considers a portfolio of 10 bonds over some horizon [0, 1]. Each bond will either
mature at time 1 for USD 1000 or default and be worthless. Events of default are
assumed independent. Accordingly, the portfolio’s market value 1P at time 1 is
given by

1P =
10∑

i=1

1Si [1.5]

where the 1Si represent the individual bonds’ accumulated values at time 1. Let’s
express this relationship in matrix notation. Let 1S be a random vector with compo-
nents 1Si . Let ωω be a row vector whose components are the portfolio’s holdings in
each bond. Since the portfolio holds one of each, ωω has a particularly simple form:

ωω = (1 1 1 1 1 1 1 1 1 1). [1.6]

With this matrix notation, [1.5] becomes the product:

1P = ωω 1S. [1.7]

Let 1|0φi denote the probability function, conditional on information available
at time 0, of the i th bond’s value at time 1:

1|0φi

(
1si

) =
{

0.9 for 1si = 1000
0.1 for 1si = 0

. [1.8]

Measured in USD 1000s, the portfolio’s value 1P has a binomial distribution with
parameters n = 10 and p = 0.9. The probability function is graphed in Exhibit 1.3:

Exhibit 1.3 The market value (measured in USD 1000s) of Leavens’ bond portfolio has a
binomial distribution with parameters 10 and 0.9.
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Writing for a non-technical audience, Leavens does not explicitly identify a
VaR metric, but he speaks repeatedly of the “spread between probable losses and
gains.” He seems to have the standard deviation of portfolio market value in mind.
Based upon this metric, his portfolio has a VaR of USD 948.69.

SOME MATHEMATICS

Our next two examples are more technical. Many readers will find them simple.
Other readers—those whose mathematical background is not so strong—may find
them more challenging. A note for each group:

• For the first group, the examples may tell you things you already know, but in
a new way. They introduce notation and a framework for thinking about VaR
that will be employed throughout the text. At points, explanations may appear
more involved than the immediate problem requires. Embrace this complex-
ity. The framework we start to develop in the examples will be invaluable in
later chapters when we consider more complicated VaR measures.

• For the second group, you do not need to master the examples on a first read-
ing. Don’t think of them as a main course. They are not even an appetizer.
We are taking you back into the kitchen to sample a recipe or two. Don’t
linger. Taste and move on. In Chapters 2 through 5, we will step back and
explain the mathematics used in the examples—and used in VaR measures
generally. A purpose of the examples is to provide practical motivation for
those upcoming discussions.

There is a useful formula that we will use in the next two examples. We introduce
it here for use in the examples, but will cover it again in more detail in Section 3.5.

Let X be a random vector with covariance matrix ΣΣΣΣ. Define random variable Y
as a linear polynomial

Y = bX + a [1.9]

of X, where b is an n-dimensional row vector and a is a scalar. The variance of Y
is given by

var(Y ) = bΣΣΣΣb′, [1.10]

where a prime ′ indicates transposition. Formula [1.10] is a quintessential formula
for describing how correlated risks combine, but there is a caveat. It only applies
if Y is a linear polynomial of X.

EXAMPLE: INDUSTRIAL METALS. Today is June 30, 2000. A US metals mer-
chant has a portfolio of unsold physical positions in several industrial metals. We
wish to calculate the portfolio’s 1-week 90% USD VaR. Measure time t in weeks.
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Specify the random vector

1S =




1S1
1S2
1S3
1S4
1S5
1S6




∼




accumulated value of a ton of aluminum
accumulated value of a ton of copper
accumulated value of a ton of lead
accumulated value of a ton of nickel
accumulated value of a ton of tin
accumulated value of a ton of zinc




[1.11]

where accumulated values are in USD and reflect the value of a ton of metal
accumulated from time 0 to time 1. Accumulated value might reflect price changes,
cost of financing, warehousing, and insurance. For simplicity, we consider only
price changes in this example.

Current values in USD/ton for the respective metals are

0s =




0s1
0s2
0s3
0s4
0s5
0s6




=




1516.0
1719.5

476.0
7945.0
5715.0
1165.0



. [1.12]

The portfolio’s holdings are:

• 1000 tons of aluminum,
• 2000 tons of copper,
• 500 tons of lead,
• 250 tons of nickel,
• 1000 tons of tin, and
• 100 tons of zinc,

which we represent with a row vector:

ωω = (1000 2000 500 250 1000 100). [1.13]

The portfolio’s current value is

0p = ωω 0s = 13.011MM. [1.14]

Its future value 1P is random:

1P = ωω 1S. [1.15]

We call this relationship a portfolio mapping. We represent it schematically as

1P
ωω←− 1S. [1.16]

Let 1|0σ and 1|0ΣΣΣΣ be the standard deviation of 1P and the covariance matrix
of 1S, both conditional on information available at time 0. Let’s apply [1.10]. By
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[1.15], 1P is a linear polynomial of 1S, so:11

1|0σ =
√

ωω1|0ΣΣΣΣωω′. [1.17]

We know ωω. We need 1|0ΣΣΣΣ to obtain 1|0σ. Exhibit 1.4 indicates historical metals
price data.

Exhibit 1.4 Thirty weekly historical prices for the indicated metals. All prices are in USD per
ton. Source: London Metals Exchange (LME).

Applying time-series methods described in Chapter 4, we construct

1|0ΣΣΣΣ =




1,709 1,227 8 3,557 774 275
1,227 1,746 65 6,274 574 469

8 65 128 −270 −49 69
3,557 6,274 −270 137,361 −2,459 1,764

774 574 −49 −2,459 13,621 952
275 469 69 1,764 952 544



. [1.18]

Substituting [1.13] and [1.18] into [1.17], we conclude that 1P has conditional
standard deviation 1|0σ of 0.217MM USD.

Let 1|0Φ1L denote the cumulative distribution function (CDF) of portfolio loss 1L
conditional on information available at time 0. Its inverse 1|0Φ−1

1L provides quantiles
of 1L . Our VaR metric is 1-week 90% USD VaR, so we seek the .90-quantile,
1|0Φ−1

1L (.90), of portfolio loss 1L .
We don’t have an expression for 1|0Φ1L . All we have is a conditional standard

deviation 1|0σ for 1P . We need additional assumptions or information. A simple
solution is to assume that 1P is conditionally normal with mean 1|0µ = 0p =
13.011MM. Since a normal distribution is fully specified by a mean and standard
deviation, we have now specified a conditional CDF, 1|0Φ1P , for 1P .

11Recall that standard deviation is the square root of variance.
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The .90-quantile of portfolio loss is

1|0Φ−1
1L (.90) = 0p − 1|0Φ−1

1P (.10). [1.19]

A property of normal distributions is that a .10-quantile occurs 1.282 standard
deviations below its mean,12 so

1|0Φ−1
1P (.10) = 1|0µ − 1.2821|0σ = 0p − 1.2821|0σ. [1.20]

Substituting [1.20] into [1.19]:

1|0Φ−1
1L (.90) = 1.2821|0σ = 0.278MM. [1.21]

The portfolio’s 1-week 90% USD VaR is USD 0.278MM. Note that 0p dropped
out of the calculations entirely, so we did not actually need to calculate its value
in [1.14].

EXAMPLE: AUSTRALIAN EQUITIES. Our next example is ostensibly similar to
the last. As we work through it, a number of issues will arise. These will motivate
different approaches for a solution.

Today is March 9, 2000. A British trader holds a portfolio of Australian stocks.
We wish to calculate the portfolio’s 1-day 95% GBP VaR. The portfolio’s current
value 0p is GBP 0.198MM. Let 1P represent its value tomorrow. Define the random
vector

1S =

1S1

1S2
1S3


∼


GBP accumulated value of a share of National Australia Bank

GBP accumulated value of a share of Westpac Banking Corp.
GBP accumulated value of a share of Goodman Fielder


.

[1.22]

Accumulated values reflect price changes, dividends, and changes in the GBP/
AUD exchange rate since time 0. The portfolio’s holdings are:

• 10,000 shares of National Australia Bank,
• 30,000 shares of Westpac Banking Corp.,
• −15,000 shares of Goodman Fielder (short position),

which we represent with a row vector

ωω = (10,000 30,000 −15,000). [1.23]

The portfolio’s future value 1P is a linear polynomial of 1S:

1P = ωω 1S. [1.24]

We face a minor problem. In the last example, we used historical data to con-
struct a covariance matrix for 1S. In the present example, components of 1S are

12See Section 3.9.
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denominated in GBP, but any historical data for Australian stocks will be denom-
inated in AUD. We solve the problem with a change of variables 1S = ϕ(1R):

1S = ϕ(1R) = 1R4


1R1

1R2
1R3


, [1.25]

where

1R =




1R1
1R2
1R3
1R4


∼




AUD accumulated value of a share of National Australia Bank
AUD accumulated value of a share of Westpac Banking Corp.
AUD accumulated value of a share of Goodman Fielder
GBP/AUD exchange rate


.

[1.26]

Composing ωω with ϕ we obtain a function θ = ωω ◦◦ ϕ that relates 1P to 1R:
1P = θ(1R) = 1R4

(
10000 1R1 + 30000 1R2 − 15000 1R3

)
. [1.27]

This is a quadratic polynomial—the exchange rate 1R4 combines multiplica-
tively with the accumulated values 1R1, 1R2, 1R3. It is our portfolio mapping, and
we represent it schematically as

1P

θ︷ ︸︸ ︷
ωω←− 1S

ϕ←− 1R. [1.28]

Exhibit 1.5 provides historical data for 1R.

Date Time
National
Australia

Bank

Westpac
Banking

Corp.

Goodman
Fielder

GBP/AUD

t tr1
tr2

tr3
tr4

1/10/00 −42 22.200 10.207 1.400 0.4007
1/11/00 −41 21.800 10.215 1.410 0.3990
1/12/00 −40 21.630 10.220 1.380 0.3995
1/13/00 −39 21.430 10.310 1.370 0.4057

…… … … … …

2/29/00 −7 21.400 10.400 1.170 0.3901
3/1/00 −6 22.106 10.767 1.184 0.3828
3/2/00 −5 22.273 10.580 1.200 0.3855
3/3/00 −4 21.442 10.410 1.170 0.3847
3/6/00 −3 20.950 10.410 1.140 0.3824
3/7/00 −2 21.340 10.414 1.080 0.3826
3/8/00 −1 20.830 10.500 1.130 0.3844
3/9/00 0 20.080 10.800 1.150 0.3892

Exhibit 1.5 Two months of historical data for the GBP/AUD exchange rate and AUD prices
for the indicated stocks. None of the stocks had ex-dividend dates during the period indicated.
Source: Federal Reserve Bank of Chicago and Dow Jones.
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Using time-series methods described in Chapter 4, we construct a conditional
covariance matrix for 1R:

1|0ΣΣΣΣ =




.156644 .030382 −.000135 −.000213

.030382 .029574 .000157 .000053
−.000135 .000157 .000739 −.000010
−.000213 .000053 −.000010 .000015


. [1.29]

Now we face another problem. We have a portfolio mapping 1P = θ(1R) that
expresses 1P as a quadratic polynomial of 1R, and we have a conditional covari-
ance matrix 1|0ΣΣΣΣ for 1R. This is similar to the previous example where we had a
portfolio mapping 1P = ωω 1S that expressed 1P as a linear polynomial of 1S, and
we had a covariance matrix 1|0ΣΣΣΣ for 1S. Critically, in the previous example, our
portfolio mapping was linear. Now it is quadratic. In the previous example, we
could apply [1.10] to obtain the conditional standard deviation of 1P . Now we
cannot.

Nonlinear portfolio mappings pose a recurring challenge for measuring VaR.
There are various solutions, including:

• apply the Monte Carlo method to approximate the desired quantile;
• approximate the quadratic polynomial θ with a linear polynomial θ̃ and then

apply [1.10] as before;
• assume 1R is conditionally joint-normal and apply probabilistic techniques

appropriate for quadratic polynomials of joint-normal random vectors.

Each is a standard solution used frequently in VaR measures. Each has advan-
tages and disadvantages. We will study them all in later chapters. For now, we
briefly describe how each is used to calculate VaR for this Australian equities
example.

EXAMPLE: AUSTRALIAN EQUITIES (MONTE CARLO TRANSFORMATION). We
discuss the Monte Carlo method formally in Chapter 5. For now, an intuitive
treatment will suffice. We assume 1R is joint-normal with mean vector 1|0µµµµµµ = 0r
and covariance matrix 1|0ΣΣΣΣ given by [1.29]. Based upon these assumptions, we
“randomly” generate 10,000 realizations, 1r[1], 1r[2], . . . , 1r[10,000], of 1R. We set

1p[k] = θ
(1

r [k]
)

[1.30]

for each k, constructing 10,000 realizations 1p[1], 1p[2], . . . , 1p[10,000] of 1P . Results
are indicated in Exhibit 1.6.
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National
Australia

Bank

Westpac
Banking

Corp.

Goodman
Fielder

GBP/AUD Portfolio

k ][
1

1 k
r

][
2

1 k
r

][
3

1 k
r ][

4
1 k
r

][1 k
p

1 20.290 10.913 1.150 0.3823 196,135
2 19.392 10.333 1.153 0.3870 188,327
3 20.088 10.744 1.164 0.3917 198,117
4 20.620 11.083 1.124 0.3920 204,538
5 19.660 10.811 1.154 0.3909 196,855
6 19.973 10.806 1.162 0.3823 193,639
7 19.732 10.867 1.158 0.3902 197,437
8 19.655 10.925 1.200 0.3889 196,902
9 20.101 10.886 1.122 0.3909 199,665

10 21.136 11.064 1.129 0.3801 200,037
11 19.968 10.839 1.180 0.3881 196,804
12 20.112 10.750 1.119 0.3906 197,961

…… … … … …

9998 20.240 10.565 1.166 0.3846 193,033
9999 19.531 10.378 1.186 0.3930 192,149

10000 20.078 11.215 1.154 0.3936 204,619

Exhibit 1.6 Results of the Monte Carlo analysis.

Realizations 1p[k] of 1P are summarized with a histogram in Exhibit 1.7. We
may approximate any parameter of 1P with the corresponding sample parameter
of the realizations.

Exhibit 1.7 Histogram of realizations 1p[k] of the portfolio’s value 1P.

The sample .05-quantile of our realizations 1p[k] is USD 191,614. We use this
as an approximation of the .05-quantile, 1|0Φ−1

1P (.05), of 1P . The .95-quantile of
portfolio loss is:

1|0Φ−1
1L (.95) = 0p − 1|0Φ−1

1P (.05) [1.31]

≈ 197,539 − 191,614 [1.32]

= 5925. [1.33]

The portfolio’s 1-day 95% GBP VaR is approximately GBP 5925.
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EXAMPLE: AUSTRALIAN EQUITIES (LINEAR REMAPPING). As an alternative
solution, let’s approximate θ with a linear polynomial θ̃ based upon the gradient13

of θ. We must choose a point at which to take the gradient. A reasonable choice is
0E(1R), which is the expected value of 1R conditional on information available at
time 0. Let’s assume 0E(1R) = 0r. We define

1P̃ = θ̃(1R) = θ(0r) + ∇∇θ(0r)′[1R − 0r]. [1.34]

Our approximation 1P̃ = θ̃(1R) of the portfolio mapping 1P = θ(1R) is an ex-
ample of a portfolio remapping. We obtain 0r = (20.080, 10.800, 1.150, 0.3892)
from Exhibit 1.5 and evaluate

θ(0r) = 197,539 [1.35]

and

∇∇θ(0r) =




3,892
11,676
−5,838
507,550


. [1.36]

Our remapping [1.34] is

1P̃ = θ(0r) + ∇∇θ(0r)′[1R − 0r] [1.37]

= ∇∇θ(0r)′1R + [θ(0r) − ∇∇θ(0r)′0r] [1.38]

= ∇∇θ(0r)′1R − 197,538. [1.39]

The portfolio remapping is represented schematically as

1P

θ︷ ︸︸ ︷
ωω←−− 1S

ϕ
←−−− 1R

↑
1̃P

θ̃←−−−−−−−− 1R

[1.40]

The upper part of the schematic is precisely schematic [1.28], indicating the
original portfolio mapping 1P = θ(1R). The lower part indicates the remapping
1P̃ = θ̃(1R). In such schematics, vertical arrows indicate approximations. 1P̃ approx-
imates 1P .

Because [1.39] is a linear polynomial, we can apply [1.10] to obtain the condi-
tional standard deviation 1|0σ̃ of 1P̃:

1|0σ̃ =
√

∇∇θ(0r)′1|0ΣΣΣΣ ∇∇θ(0r) = 3572. [1.41]

13Gradient approximations are discussed in Section 2.3.
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Assume 1P̃ is conditionally normal with this standard deviation 1|0σ̃ and mean
1|0µ̃ = 0p. The .05-quantile of a normal distribution occurs 1.645 standard devia-
tions below its mean, so

1|0Φ−1
1̃P

(.05) = 1|0µ̃ − 1.6451|0σ̃ = 191,662, [1.42]

and the .95-quantile of portfolio loss is
1|0Φ−1

1L̃
(.95) = 0p − 1|0Φ−1

1̃P
(.05) = 5876. [1.43]

The portfolio’s 1-day 95% GBP VaR is approximately GBP 5876. This result
compares favorably with our previous result of GBP 5925, which we obtained with
the Monte Carlo method.

EXAMPLE: AUSTRALIAN EQUITIES (QUADRATIC TRANSFORMATION). For a
third approach to calculating VaR for our Australian equities portfolio, assume that
1R is joint-normal with conditional mean vector 0E(1R) = 0r and covariance matrix
1|0ΣΣΣΣ obtained previously. Our original portfolio mapping 1P = θ(1R) defines 1P as
a quadratic polynomial of a conditionally joint-normal random vector 1R. As we
will discuss in Chapter 3, any real-valued quadratic polynomial of a joint-normal
random vector can be expressed as a linear polynomial of independent normal and
chi-squared random variables. In this case, the expression takes the form

1P = −15.02X1 + 14.63X2, [1.44]

where X1 and X2 are independent chi-squared random variables, each with 1 degree
of freedom and respective non-centrality parameters of 674.2 and 14,195.14 This
is not an approximation. The representation is exact.

There are various ways to extract a quantile of portfolio loss from a represen-
tation such as [1.44]. Two approaches that we shall discuss in Chapter 3 are:

1. approximate the desired quantile using the Cornish-Fisher (1937)
expansion, and

2. invert the characteristic function of 1P using numerical integration.

Applying the first approach to our Australian equities portfolio yields an ap-
proximate 1-day 95% GBP VaR of GBP 5854.

EXERCISES

1.10 Using a spreadsheet, extend Leavens’ analysis to a bond portfolio that holds
20 bonds.
a. Graph the resulting probability function for 1P .
b. Based upon Leavens’ “spread between probable losses and gains” VaR

metric, what is the VaR of the portfolio?

14The chi-squared distribution is discussed in Section 3.9.
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1.11 Using only the information provided in the example, which of the following
VaR metrics could we evaluate for Leavens’ bond portfolio:
a. 95% quantile of loss;
b. variance of portfolio value;
c. standard deviation of simple return.

1.12 This exercise is based upon an equity example in Harry Markowitz’s 1959
book Portfolio Selection. Suppose today is January 1, 1955. Measure time t
in years and define:

1S =




1S1
1S2
...

1S7


 ∼




accumulated value of 1 USD in AT&T

accumulated value of 1 USD in American Tobacco
...

accumulated value of 1 USD in Firestone


.

[1.45]

Each accumulated value represents the value at time 1 of an investment
worth 1 USD at time 0 in the indicated stock. Accumulated values include
price changes and dividends. Consider a portfolio with holdings

ωω = (10,000 5,000 −1,000 2,000 −5,000 1,000 6,000). [1.46]

Based upon data provided by Markowitz, we construct a conditional co-
variance matrix 1|0ΣΣΣΣ for 1S:

1|0ΣΣΣΣ =




0.0147 0.0215 0.0080 0.0145 0.0100 0.0254 0.0244
0.0215 0.0534 0.0162 0.0243 0.0322 0.0400 0.0490
0.0080 0.0162 0.1279 0.0209 0.0128 0.1015 0.0515
0.0145 0.0243 0.0209 0.0288 0.0113 0.0291 0.0208
0.0100 0.0322 0.0128 0.0113 0.0413 0.0296 0.0290
0.0254 0.0400 0.1015 0.0291 0.0296 0.1467 0.0900
0.0244 0.0490 0.0515 0.0208 0.0290 0.0900 0.0955



.

[1.47]

Calculate the portfolio’s 1-year 90% USD VaR according to the following
steps:
a. Value the vector 0s. (Hint: Based upon how the problem has been presented,

the answer is trivial.)
b. Using the formula 0p = ωω 0s, value 0p.
c. Specify a portfolio mapping that defines 1P as a linear polynomial of 1S.
d. Draw a schematic for your portfolio mapping.
e. Determine the conditional standard deviation 1|0σ of 1P using [1.10].
f. Assume 1P is normally distributed with conditional mean 1|0µ = 0p

and conditional standard deviation obtained in part (e). Calculate the
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.10-quantile of 1P with the formula

1|0Φ−1
1P (.10) = 1|0µ − 1.2821|0σ. [1.48]

g. Calculate the portfolio’s 1-year 90% USD VaR as

1|0Φ−1
1L (.90) = 0p − 1|0Φ−1

1P (.10). [1.49]

1.8. VAR MEASURES

In the previous section, we described several VaR measures. Despite a disparity
in modeling techniques, our treatment was standardized. Certain concepts recurred.
You are now familiar with notation such as: ωω, 1P , θ, 1S, 1R, and 1|0ΣΣΣΣ.

We have many VaR measures to consider. Before long, we will stop describ-
ing entire VaR measures and start describing stand-alone components of VaR
measures—much as auto enthusiasts might discuss types of brakes or fuel injec-
tors without having a particular automobile in mind. In this sense, our discussions
will have a “building block” quality. We don’t want every VaR measure to be
a unique monolith standing on its own. Instead, we will treat them as modular.
Avoiding the top-down approach of discussing Toyotas, Fords, and Mercedes, we
will take a bottom-up approach, discussing fuel injectors, suspension systems, and
brakes. To this end, we must identify the essential components that make up any
VaR measure. In doing so, we will lay out a framework for much of this book.

RISK FACTORS

A risk factor is any random variable 1Qi whose value will be realized during
the interval (0,1] and will affect the market value of a portfolio at time 1. A risk
vector 1Q is a random vector of risk factors. If a risk vector reflects a future value
of some time series, we may speak of its current value 0q or historical values 0q,
−1q, −2q,−3q, . . .

One particular risk factor and two risk vectors play important roles in VaR
measures. We give them special names and notation. These are:

• the portfolio’s future value 1P;
• the asset vector 1S; and
• the key vector 1R.

The portfolio’s future value 1P represents the market value at time 1 of the
portfolio for which VaR is to be measured. The portfolio is assumed fixed in the
sense that it will not be traded during the period [0, 1], and no assets will be added
or withdrawn. This does not preclude traders or portfolio managers from trading!
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It simply means that a VaR measure quantifies the market risk of a portfolio based
upon its composition at time 0. The VaR measure can recognize changes in the
portfolio’s composition during the period [0, 1] due to planned events such as
options expiring, dividends being paid, or scheduled payments being made on a
swap.

We are interested in the portfolio’s current value 0p only if a VaR metric depends
upon it. We generally do not consider or attempt to define prior historical portfolio
values. Asset vector 1S has asset values 1Si as components. These represent ac-
cumulated values of specific assets that may make up a portfolio. Realizations 1si

may be negative, so our definition recognizes no accounting distinction between
assets and liabilities. Accumulated value is denominated in the base currency em-
ployed by the VaR metric. It may reflect such variables as capital gains, dividends,
coupons, margin payments, reinvestment income, storage costs, insurance, financ-
ing, changes in exchange rates, leasing income, etc.

Mathematically, we define a portfolio as a pair (0p, 1P), where the constant 0p
is the portfolio’s current value, and the random variable 1P is the portfolio’s future
value. Similarly, we mathematically define an asset as a pair (0si , 1Si ), where 0si

is the asset’s current value, and 1Si is the asset’s future value.
We have considerable leeway in how we select what financial instruments to

represent with assets. This may affect VaR results. Consider an investor who bor-
rows EUR 100,000 and invests it in Hoechst stock. We might model the portfolio
three different ways:

1. as comprising holdings in two assets whose values 1S1 and 1S2 represent
the accumulated values of the stock and the financing, respectively;

2. as comprising a single asset whose value 1S1 represents the accumulated
value of the stock less the accumulated value of its financing;

3. as comprising a single asset whose value 1S1 represents the accumulated
value of the stock.

The first two representations are financially equivalent. One approach (probably
the first) will be computationally easier to work with, but both will result in the
same VaR. The third representation is different. It excludes financing from the
portfolio. With it, the random variable 1P represents something different than it
does with the first two approaches.

As we shall see, every VaR measure must directly characterize a conditional
probability distribution for some vector of risk factors, such as prices, interest rates,
spreads, or implied volatilities. Those risk factors 1Ri are called key factors. They
are the components of the key vector 1R. Occasionally, we use asset values 1Si

as key factors. This was the case in our examples of Leavens’ VaR measure and
the VaR measure for industrial metals. We explore the role of key factors in more
detail shortly.
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HOLDINGS

When we design a VaR measure, we must decide what financial assets to rep-
resent with mathematical assets (0si , 1Si ). We might measure equity positions in
shares or round lots. In Exercise 1.12, we measured them as the number of USD
held in a given stock at time 0. Positions in cocoa might be measured in pounds,
bags, or tons. The choice of units is largely arbitrary, but it must be explicit if we
are to define portfolio holdings.

A portfolio’s holdings is a row vector ωω indicating the number ωi of units held
by the portfolio in each asset.

MAPPINGS

In mathematics, a mapping is a function. The words are synonyms. In the context
of VaR, we reserve the word “mapping” for functions relating specific risk vectors
to one another. If 1Q and 1Q̇ are risk vectors, a mapping is a functional relationship:

1Q = ϕ(1Q̇). [1.50]

We call ϕ the mapping function.
A portfolio mapping is a mapping that defines a portfolio’s value 1P as a

function of some risk vector 1Q:

1P = ϕ(1Q). [1.51]

Portfolio mappings play a simple but inevitable role in VaR measures. Let’s
focus on two of our earlier examples: Leavens’ VaR measure and our Australian
equities VaR measures.

To calculate a portfolio’s VaR, we must calculate the value of some function—
VaR metric—of 0p and the conditional distribution of 1P . We interpret 1P as the
portfolio’s market value at time 1, but this is not a definition. Mathematically, there
are two ways we may define the random variable 1P:

1. we can directly specify a conditional distribution for 1P;
2. we can define 1P as a function of some random vector.

The first approach is hardly feasible. Portfolios and financial markets tend to
be complicated, so it is difficult to directly specify a conditional distribution for
1P . Inevitably, we define 1P using the second approach—which leads to portfolio
mappings. Both the Leavens and Australian equities VaR measures define 1P as a
function of some asset vector 1S:

1P = ωω 1S. [1.52]
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We interpret 1S as a vector of accumulated values, but this is not a definition.
To complete our definition of 1P , we must mathematically define 1S. As with 1P ,
there are two ways to define 1S:

1. we can directly specify a conditional distribution for 1S;
2. we can define 1S as a function of some other random vector.

At this point, Leavens uses the first approach. He specifies a conditional distri-
bution for 1S and uses this to infer a binomial distribution for 1P . We schematically
represent Leavens’ portfolio mapping as

1P
ωω←− 1S. [1.53]

The Australian equities VaR measures don’t stop there. Rather than directly
specify a joint distribution for 1S, they define 1S as a mapping of another random
vector 1R. We schematically represent the resulting portfolio mapping as

1P

θ︷ ︸︸ ︷
ωω←− 1S

ϕ←− 1R. [1.54]

No matter how many mappings are composed, ultimately 1P must be defined
as a function of some random vector for which we directly characterize a joint
distribution. That random vector is the key vector 1R. We denote the mapping
function that relates 1P to its key vector 1R with θ. Accordingly, the notation

1P = θ(1R) [1.55]

recurs frequently in this text. An exception is if asset values are used as key factors.
In this case, the relationship is

1P = ωω 1S, [1.56]

and 1S plays the dual role of asset vector and key vector.
Here, we have described not only portfolio mappings, but also a general pro-

cedure for constructing them. Portfolio mappings constructed in this manner—
starting with asset vector 1S and holdings ωω, and perhaps mapping 1S to some
key vector 1R—are called primary mappings. The name distinguishes them from
portfolio mappings constructed as remappings. All portfolio mappings stem from
primary mappings. They either are left in that form, or are approximated using one
or more remappings. We discuss primary mappings in Chapter 8.

INFERENCE

In order to characterize a distribution for 1P conditional on information available
at time 0, we must characterize a conditional distribution for 1R. We do so with an
inference procedure. It is not always necessary to fully specify a distribution. We
require only information sufficient to value our chosen VaR metric. Some inference
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procedures characterize the conditional distribution of 1R with just a covariance
matrix. We say an inference procedure is complete if it fully specifies a conditional
distribution for 1R. Otherwise it is incomplete.

Inference procedures take various forms. Leavens (1945) simply makes up a
distribution suitable for his example. In practice, techniques of time series anal-
ysis are employed—in conjunction with financial theory—to obtain a reasonable
characterization. We discuss inference procedures in Chapter 7.

TRANSFORMATIONS

A transformation procedure—or transformation—characterizes a condi-
tional distribution for 1P and uses this characterization to value a desired VaR
metric. Recall that risk comprises two components:

• exposure, and
• uncertainty.

A portfolio mapping 1P = θ(1R) incorporates both. The characterization of
a conditional distribution of 1R reflects our uncertainty. The mapping function θ
reflects our exposure. The challenge for a transformation procedure is to combine
both components to characterize a conditional distribution for 1P . To intuitively
understand what this entails, consider some simple examples.

A portfolio’s value depends upon a single normally distributed key factor
1R1. The mapping function θ is a linear polynomial. The situation is depicted in
Exhibit 1.8:

Exhibit 1.8 A linear mapping function θ is applied to a key factor 1R1. This is illustrated
intuitively by mapping evenly spaced realizations for 1R1 through the mapping function. The
output values for 1P are also evenly spaced, indicating that the mapping function causes no
distortion. Since 1R1 is conditionally normal, so is 1P.

The graph on the left depicts the mapping function θ. Evenly spaced realiza-
tions for 1R1 have been mapped into corresponding realizations for 1P . The resulting
realizations of 1P are also evenly spaced, indicating that θ imparts no distortions.
Since 1R1 is conditionally normal, 1P will also be conditionally normal, as illus-
trated in the graph on the right.
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For our second example, consider a portfolio comprising a single call option
with a conditionally normal key factor 1R1 as its underlier. To avoid a need for
additional key factors, treat applicable interest rates and implied volatilities as
constant.

Exhibit 1.9 A nonlinear mapping function θ is applied to a conditionally normal key factor
1R1. The result is a conditionally non-normal portfolio value 1P. This is illustrated intuitively by
mapping evenly spaced realizations for 1R1 through the mapping function. The correspond-
ing values for 1P are not evenly spaced, reflecting how the mapping function distorts the
distribution of 1P.

In Exhibit 1.9, the left graph depicts the familiar “hockey stick” mapping func-
tion of a call option. Evenly spaced realizations for 1R1 do not map into evenly
spaced realizations for 1P , so the mapping function causes distortions. Since 1R1 is
conditionally normal, the resulting distribution of 1P is conditionally non-normal,
as illustrated on the right.

Our third example considers a long-short options position applied to a short
position in the underlier. The mapping function θ, which is illustrated in the left
graph of Exhibit 1.10, causes realizations of 1P to cluster in two regions. If the
underlier 1R1 is conditionally normal, 1P will have the dramatically non-normal
conditional distribution shown on the right.

Exhibit 1.10 A long-short options position can result in a bimodal distribution for 1P.

These are simple examples, especially since each entails a single key factor.
Practical VaR measures often entail 100 or more key factors. If a portfolio holds
complex instruments such as exotic derivatives or mortgage-backed securities, a
mapping function can be extremely complex. Such issues can make it difficult to
design a practical transformation procedure.

We say a transformation procedure is complete if its characterization of the
conditional distribution for 1P is sufficiently general to support any practical VaR
metric. Otherwise, the transformation procedure is incomplete. For example, if a
transformation characterizes the conditional distribution of 1P with a mean and a
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standard deviation, it is incomplete. If it characterizes it as conditionally normal
with a specified mean and standard deviation, it is complete. We call a VaR measure
complete or incomplete according to whether its transformation procedure is
complete.

In our examples of Section 1.7, we illustrated three types of transformations:

1. linear transformations,
2. quadratic transformations, and
3. Monte Carlo transformations.

The first applies if a portfolio mapping function θ is a linear polynomial. The
second applies if θ is a quadratic polynomial and 1R is joint-normal. The third
applies quite generally and is one example of a category of transformations called
numerical transformations. We discuss transformation procedures in Chapter 10.

REMAPPINGS

All the VaR measures we have considered so far entail modest calculations.
They apply to small portfolios that are easy to value. When we develop VaR
measures for real portfolios, this will change.

Every VaR measure employs—explicitly or implicitly—a primary mapping
1P = θ(1R). Primary mappings can be complicated. This occurs for two reasons:

1. The mapping function θ may be complicated—Mapping functions are for-
mulas for marking-to-market a portfolio as of time 1. They are constructed using
techniques of financial engineering. All the computational challenges that arise
with financial engineering can arise with θ.

2. The key vector 1R may be complicated—VaR measures are sometimes im-
plemented with 1000 or more key factors 1Ri . Also, the joint distribution of 1R
may be difficult to work with.

Such complexity can make it difficult to directly apply a transformation proce-
dure. This is especially true if both a primary mapping and a transformation proce-
dure employ the Monte Carlo method—resulting in nested Monte Carlo analyses.

Consider a portfolio holding 300 exotic derivatives, each of which can only be
valued using the Monte Carlo method. The primary mapping has the form

1P

θ︷ ︸︸ ︷
ωω←− 1S

ϕ←− 1R, [1.57]

where key factors 1Ri represent values for underliers, implied volatilities, and dis-
count factors. Valuing the mapping 1S = ϕ(1R) for a specific realization 1r[k] re-
quires 300 Monte Carlo analyses, one for each derivative’s value: 1s[k]

i = ϕi (
1r[k]).

Valuing a realization 1p[k] of 1P based upon one realization 1r[k] entails performing
all 300 of these Monte Carlo analyses.
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Suppose we employ a Monte Carlo transformation procedure to calculate the
portfolio’s VaR. This will nest the 300 valuation Monte Carlo analyses within
the Monte Carlo transformation. The Monte Carlo transformation might calculate
10,000 realizations 1p[k]. Since each entails 300 valuation Monte Carlo analyses,
the entire analysis will entail 10,000(300) = 3,000,000 Monte Carlo analyses. This
is a staggering computational load.

To make a transformation less computationally expensive, we might replace
a primary mapping 1P = θ(1R) with an approximation 1P̃ = θ̃(1̃R), which we
call a remapping. In our (second) Australian equities example, we considered a
simple remapping. The above example of nested Monte Carlo analyses illustrates
an extreme case. Here, a remapping would be crucial.

Formally, a remapping is an approximation of a risk vector 1Q with some other
risk vector 1Q̃. We describe remappings more generally in Chapter 9. For now, we
are interested in remappings 1P̃ of 1P . If we have a portfolio mapping 1P = θ(1R),
such remappings may take three forms:

1. A function remapping approximates 1P = θ(1R) by replacing θ with an
approximate mapping function θ̃, so 1P̃ = θ̃(1R).

2. A variables remapping approximates 1P = θ(1R) by replacing 1R with
alternative keyvector 1̃R, so 1P̃ = θ(1̃R).

3. A dual remapping approximates 1P = θ(1R) by replacing both θ and 1R,
so 1P̃ = θ̃(1̃R).

The first and third forms are most common. Many function remappings approx-
imate a portfolio mapping function θ with a linear or quadratic polynomial θ̃ to
facilitate use of a linear or quadratic transformation. Many dual remappings re-
place a high-dimensional 1R with a lower dimensional 1̃R. Principal component
analysis, which we discuss in Chapter 3, can be useful for this purpose. Remap-
pings may be applied to primary mappings or to other remappings—approximating
approximations.

Function and dual remappings entail a change of key factors. This raises an
important issue. Key factors are specific to a portfolio. Portfolio (0p, 1P) has key
vector 1R. A remapped portfolio (0p̃, 1P̃) may have the same key vector 1R (as is
the case with a function remapping) or it may have a different key vector 1̃R. We
discuss remappings in Chapter 9.

SUMMARY

Recall our definition of measure from Section 1.2:

A measure is an operation that assigns a value to something.

A VaR measure is an operation that assigns a value to a portfolio. That operation
comprises various procedures, which we have defined above. Exhibit 1.11 relates
these to one another in a general schematic.
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Exhibit 1.11 VaR measures follow a common general scheme, which is depicted here.
Procedures are indicated with rectangles; inputs and outputs for procedures are indicated
with ovals.

Specific VaR measures vary in certain respects, but all conform generally to the
scheme of Exhibit 1.11. They accept both a portfolio’s holdings and historical mar-
ket data as inputs. A mapping procedure specifies a portfolio mapping function
θ, which may reflect a primary portfolio mapping or a portfolio remapping. An
inference procedure characterizes a conditional distribution for 1R. It generally
employs techniques of time-series analysis.

The outputs of the mapping and inference procedures reflect the two compo-
nents of risk. The mapping function θ reflects exposure. The characterization of
the conditional distribution of 1R reflects uncertainty. A transformation procedure
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combines these two components to somehow characterize the conditional distri-
bution of 1P . It then uses that characterization to determine a value for the desired
VaR metric, which is the output for the VaR measure.

To characterize the conditional distribution of 1P , the transformation procedure
may employ results from probability theory as well as methods of numerical in-
tegration, such as the Monte Carlo method. The characterization may take many
forms—a probability density function (PDF), a characteristic function, certain
parameters of the distribution of 1P , a realization of a sample15 from the distri-
bution of 1P , etc. If the characterization is sufficiently general to calculate any
practical VaR metric, we say the transformation is complete. Otherwise, it is in-
complete. We call a VaR measure complete or incomplete according to whether
or not its transformation procedure is complete.

EXERCISES

1.13 Below are informal descriptions of three portfolio mappings and three sche-
matics of portfolio mappings. Match each description with the corresponding
schematic.
a. Portfolio value depends upon key factors 1Ri representing exchange rates,

implied volatilities, and interest rates in various currencies.
b. A stock portfolio is modeled as a function of individual stocks’ single-

period returns. For simplicity, all return pairs are assumed to have the
same correlation.

c. A portfolio holds options and futures on gold. Its market value is approx-
imated as a quadratic polynomial of applicable risk factors.

Schematic 1:

1P

θ︷ ︸︸ ︷
ωω←−− 1S

ϕ
←−−− 1R

↑
1̃P

θ̃←−−−−−−−−− 1R

[1.58]

Schematic 2:

1P

θ︷ ︸︸ ︷
ωω←−−− 1S

ϕ
←−− 1R [1.59]

15As obtained with a Monte Carlo transformation.
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Schematic 3:

1P↑

θ︷ ︸︸ ︷
ωω←−− 1S↑

ϕ
←−−− 1R↑

1P̃
ωω←−− 1S̃

ϕ
←−−− 1̃R

[1.60]

1.14 Exhibit 1.12 illustrates three portfolio mapping functions θ for portfolios
whose values 1P depend upon a single key factor 1R1. As we did in Exhibits
1.8, 1.9, and 1.10, sketch what each conditional PDF of 1P might look like
assuming 1R1 is conditionally normal with its mean at the mid-point of each
graph.

Exhibit 1.12 Portfolio mapping functions θ for Exercise 1.14.

1.15 Describe portfolios whose mapping functions might appear like those of the
previous exercise.

1.9. FURTHER READING

For more information on the origins of regulatory VaR measures, see Dale
(1996) and Molinari and Kibler (1983). Bernstein (1992) and Markowitz (1999)
describe the origins of VaR measures in the context of portfolio theory. See
Guldimann (2000) for the history of RiskMetrics. Our discussion of measures
is largely operational; see Lad (1996). The classic text—and still one of the best—
on financial risk management is the Group of 30 (1993) report. See also Culp
(2001). For market risk management specifically, see Goldman Sachs and SBC
Warburg Dillon Read (1998). For an alternative treatment of VaR measures, see
Morgan Guaranty (1996), Dowd (2002), or Marrison (2002).
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