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Abstract

This paper surveys some of the main credit risk models within structural models and
reduced-form models. In particular, it focuses on the Merton model and its extensions
under the structural models. It also concentrates on intensity based models such as
Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), and Duffie and
Singleton (1998). Empirical results investigating the differences between market-quoted
credit default swaps premium and model implied CDS premiums are presented. Finally,
the Kettunen, Ksendzovsky, and Meissner (KKM) model (2003) is reviewed and
implemented to compute credit default swap premium for a given set of data. From the
existing research on credit risk models, reduced form models seems to be the preferred
approach when pricing a firm’s risky debt or related credit derivatives.
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Credit Risk Models and Valuation of Credit Default
Swap Contract

1. Introduction.

Pricing credit derivatives and credit risk in general, is quite similar in technique to pricing
traditional derivatives, such as interest rate swaps or stock options. This paper focuses on
the investigation on two general methods for valuing default risk claims and by extending
these models to valuation of credit derivatives in particular default swap or credit default
swap contracts (CDS). The models or approaches investigated are the structural and
reduced form models. We will examine the suitability of these models to the pricing of
credit protection in rapidly growing credit default swap market by identifying some of the
key advantages and drawback.

The following are some of the key questions that this paper is concerned to investigate.
How is credit default swap priced?. Which model is most appropriate model to use for
pricing implementations?. We will use reduced or intensity based model to implement
pricing default swaps using corporate bond yields and solve for the default swap premium
they imply. We compare these implied credit default swap premium to actual market
CDS prices. Implied premium tend to be much higher than then the CDS prices quoted in
the market. What accounts for these differences?. The differences are related to measures
of Treasury special-ness, corporate bond illiquidity, and coupon rates of the underlying
bonds, suggesting the presence of important tax related and liquidity components in
corporate spreads. Also, both credit derivatives and equity markets tend to lead the
corporate bond market.

There are number of issues that may arise from the implementation when pricing the
credit default swap, for example, what are the assumptions underlying the pricing
model?. What are the implications for relaxing some of these assumptions? For example,
we will assume no counter party default and that interest rate, default probabilities and
recovery rates are independent. The one parameter necessary for valuing default swap
that cannot be observed directly in the market is the expected recovery rate. Hull & White
(2000) assume that the same recovery rate is used for estimating default probability
densities and for calculating the payoff. As it happens there is an offset. As the expected
recovery rate increases, estimates of the probability of default increase and payoff
decrease®. The overall impact of the recovery rate assumption on the value of a credit
default swap is generally fairly small when the expected recovery is in the 0% - 50%
range.

! See Appendix C for default probability term structures under various recovery rates and credit ratings.
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1.1.  Structural Models.

Structural credit pricing models are based on modelling the stochastic evolution of the
balance sheet of the issuer, with default when the issuer is unable to or unwillingly to
meet its obligations. In this model the asset value of the firm is assumed to follow a
diffusion process and default is modelled as the first time the firm's value hit a pre-
specified boundary. Because of the continuity of the process used, the time of default is a
predictable stopping time. The models of Merton (1974), Black and Cox (1976), Geske
(1977) Longstaff and Schwartz 1993 and Das 1995 are representatives of this approach.

1.2  Reduced-Form Models/ Intensity Models

In the intensity models the time of default is modelled directly as the time of the first
jump of a Poisson process with random intensity. The first models of this type were
developed by Jarrow and Thurnbull (1995), Madal and Unal (1998) and Duffie and
Singleton (1997). Jarrow and Thurnbull assume default is driven by a Poisson process
with constant intensity and known payoff at default. Duffie and Singleton (1997) model
assumes the payoff when default occurs as cash, but denoted as a fraction (1-q) of the
value of defaultable security just before default. This model was applied to a variety of
problems including swap credit risk, two sided credit risk and pricing credit default swap,
binary credit default swap and credit default swap option. Table 1.1 provides brief
overview on the existing credit risk model’s main advantages as well as their limitations.

Table 1.1

Strengths and Drawbacks of Various Models for Default Risky Bonds and Swaps
Model Advantages Drawbacks

Merton (1974) Simple to implement Requires inputs from

value of the firm.

Default occurs only at the
maturity of the debt.

Information in the history
of defaults and credit
rating changes cannot be

used.
Longstaff and Schwartz Simple to implement. Requires inputs from
(1995) value of the firm.
Allows for stochastic term
structure and correlation Information in the history
between defaults and of defaults and credit
interest rates rating changes cannot be
used.
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Jarrow, Lando, and
Turnbull (1997)

Simple to implement.

Can exactly match the
existing prices of default-
risky bonds to infer risk-
neutral default
probabilities of default and
credit rating changes.

Uses the information in the
history of defaults and
credit rating changes.

Correlation not allowed
between default
probabilities and the level
of interest rates.

Credit spreads changes
only when credit rating
change.

Lando (1998) Allows correlation Historical default
between default probabilities and credit
probabilities and interest rating changes are used
rates. under the assumption that

the risk premiums due to

Allows many existing term | defaults and rating changes
structure models to be are zero.
easily embedded in the
valuation framework.

Model Advantages Drawbacks

Duffie and Singleton
(1997)

Allows correlation
between default
probabilities and interest
rates.

Recovery can be random
and depend on the pre-
default value of the
security

A default free term
structure model can be
accommodated, and
existing valuation results
for default free term
structure models can be
readily used.

Historical credit changes
and defaults cannot be
used.

Duffie and Haug (1996)
(swaps).

Has all the advantages of
Duffie and Singleton.

Historical credit changes
and defaults cannot be
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ISDA guidelines for
settlement upon swap
default can be
incorporated.

used.

Difficult for computational
reasons especially for
cross currency swaps if

domestic and foreign
interest rates are random
or stochastic.

Figure 1.1 illustrates the types of credit risk models available and the focus of this paper
is the implementation of the asset value models and the intensity based models.

Figure 1.1: Credit Risk Models
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2.1 Structural Credit Risk Models.
2.1.1 Merton’s Model.

The basic foundations of structural models have been laid in the seminal paper Merton
(1974). Here it is assumed that a firm is financed by equity and single zero-coupon bond
with notional amount or face value of K and maturity T. The firm’s contractual obligation
is to repay the face value (K) of the debt to the bond investors at the maturity of the debt
(T). In the event of default, bond holders will assume ownership of the firm. Hence the
default time 7 is a discrete random variable given by

T if V; <K

T=
o if  else.
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Figure 2.1 shows the triggering of default as soon as the stochastic path of the firm value
crosses the default barrier which is the face value of the debt at any time between time
zero and T. This however is an extension of Merton’s model which relaxes the
assumption of default taking place only at maturity of the debt. Under Merton’s model,
default cannot occur prior to the maturity of the debt. This means that default is only
triggered if the asset value exceeds the total outstanding debt of the firm at time T.

Figure 2.1

Non-default path
~— N —
o

The dynamics of the firm value under the probability measure 1P follows a geometric
Brownian motion:

%:ydt+ odW,, V, >0,
VI
dv, = wV,dt + oV, dW,, V, > 0, (1)

Where 1 e Ris a drift parameter, o> 0, is a volatility parameter for the firm, and W, is a
standard Brownian motion. The solution for equation (1) is given by?:

V, =V, exp(u —%az)t + oW,

We apply Ito’s formula and the above stochastic differential equation (SDE) for the firm
and formulate the Black & Scholes differential equation.
Ito’s Lemma: let F(V, t) be twice-differentiable function of t and of the random process

V, given in (1) with well behaved drift and diffusion parameters, x,and o ° Then we
have

2 Joshi M.S. “The concepts and practice of mathematical finance” (2003). Cambridge University Press
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dr, = F gy + F gr & OF v @)
oV, ot 2V%

Using Ito’s multiplication rules, the term dV,> can be reduced to*:
dv,?= oV dt 3)

By substituting 1 and 3 into equation 2 and incorporating the portfolio replication, one
can drive for the Black & Scholes partial differential equation whose solution will depend
on the specified boundary condition®:

2
OF pv o OF 1 a2 O°F

~RF =0 4
oV, ot 2 oV %, @

W; is normally distributed with zero mean and variance T, default probabilities p(T) are
given by
logL—mT
p(t) = PV, < K]=P[oW, < logL-mT]=N| ————

oT

Where szﬁis the initial leverage ratio and N(.) is the standard normal distribution
0

function such that N (X) _J' exp(—az jdz

If at time T the firm’s asset value exceeds the promised payment K, the lenders are paid
the promised amount and the shareholder receive the residuals asset value. In the even the
asset value is less than the promised payment the firm defaults and the ownership of the
firm will be transferred to the bond holders. Equity is worthless because of limited

liability®. The value of the bond issue B/ at time T is given by

B/ = min(K,V;) = K- max(0, K-V;)

The above payoff is equivalent to of a portfolio composed of a default-free loan with face
value K maturing at time T and a short European put position on the assets of the firm
with strike K and maturity T. The value of the equity is equivalent to the payoff of a
European call option on the assets of the firm with strike K and maturity T.

® This means that the drift and the diffusion parameters are not too irregular. Square integrability would
satisfy this condition.

* See Bjork Tomas “Arbitrage theory in continuous time” (1998). Oxford University Press

® See Wilmott, Howison and Dewynne “The mathematics of financial derivatives” (1995). Cambridge
University Press

® See Table 2.1
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Table 2.1 Payoffs at maturity

Assets Bonds Equity
No Default Vi 2K K Vi - K
Default Vi =K Vr 0

E; = max(0,V; — K),

Pricing equity and credit risky debt reduces to pricing European options. Under the
classical Black-Scholes setting with constant risk free rate, volatility and solving equation
(4) by imposing suitable initial and boundary conditions, the equity value is given by the
Black-Scholes vanilla call option formula:

E, = VN (d,)—exp(~rT)KN(d,) (5)
Where

In(\lj j+(r+;o—2jT
d, = ° - and d, =d, —oT

The value of the corresponding the defaulable bond is given by

B, = Kexp(-rT) - P(c,K,T,V,r) (6)
Where P is the Black-Scholes put option formula. The value of the put option is equal to

the present value of the default loss suffered by bond investors. This is the discount for
the default risk relative to the risk-free bond, which is valued at K exp(-rT). This yields

By =V, —V,N(d,)+exp(-rT)KN(d,) (7)
Using equation (5) and (7), the market value of the firm is given by:
Vo =VoN(d,)—exp(-rT)KN(d,) + V, —V,N(d,) +exp(~rT)KN(d,) (8)

Both of the equity value and debt value will depend on the firm’s leverage ratio, equation
(8) shows however that their sum does not depend on the firms leverage ratio. This result
asserts that the market value of the firm is independent of its leverage, see Rubinstein
(2003). The risk neutral default probability can be expressed:

)= In(\'jon{H;aZjT oF o
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This depends only on the leverage, L, the asset volatility o, and maturity time of the
debt, T.

The credit spread is the difference between the yield on the defaultable bond and the yield
of an equivalent default-free zero coupon bond. This is the access return demanded by
bond investors to bear the potential default losses.

Figure 2.2 Credit Spread Term Structure

— —
¥ ] +
=]

,_
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a0

Credit Spread in bp

Timein Years

Term structure of credit spreads with different levels of volatilities
Source: Bloomberg L.P

Since the yield Y (t,T) on a bond with price b(t,T) satisfies;
b(t,T) = exp(=y(t, T)(T —t)

The credit spread S(t,T) at time t for a maturity of T is given as:

.
S(t,T) = —%mg((B—;} T >t,
t

Where g is the price of default-free bond maturing at time T. The term structure of
credit spreads is the schedule of S(t,T) against different maturities, holding t fixed. In

the Black-Scholes framework, we have A7 = Kexp(-r(T —t)) and we obtain the credit
spread at time zero

S(0,T) = —Tllog((N(dz)+1efTN(—dl)j, T>0,

L

10
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which is a function of maturity T, asset volatility o (the firms business risk), the initial
leverage ratio L, and the risk free rate r. Figure 2.2 plots the credit spread between
defaultable and non defaultable bonds with various maturities and different volatility
levels. This information can be used as a proxy to derive the prices of credit derivatives
contracts such as credit default swaps.

According to Kim, Ramaswamy, and Sundersan (1993) and Jones, Mason, and Rosenfeld
(1984), Merton’s model does not generate the level of yield spreads which can be
observed in the market. They showed that Merton’s model is unable to generate yield
spreads in excess of 120 basis points, whereas over a period between 1926-1986, the
yield spread of AAA-rated corporate ranged from 15 to 215 basis points.

Using a set of structural models, Ericsson, J, Reneby, J and Wang, H., (2005)
investigated bond yield spreads and the price of default protection for a sample of US
corporations. Theory predicts that if credit risk alone explains these two quantities, their
magnitudes should be similar. Their findings are consistent with previous results that
bond yield spreads are underestimated. However, their result showed that credit default
swap prices (premium) were much lower than bond spreads. Furthermore, their results
highlighted the strong relationship between bond residuals and non-default proxies, in
particular illiquidity. CDS residuals exhibit no such relations. This suggests that the bond
spread underestimation by structural models may not stem from their inability to properly
account for default risk, but rather from the importance of the omitted risk factors.

Pricing section of this paper will provide further empirical analysis on credit default swap
premium data from the market and default risk pricing from structural models.

2.1.2 Advantages, disadvantages and model extensions

The main advantage of Merton’s model is that it allows to directly apply the theory of
pricing European options developed by Black and Scholes (1973). However, the model
requires to make the necessary assumptions to adapt the dynamics of the firm’s asset
value process, interest rates and capital structure to the requirements of the Black-Scholes
model.

Despite its simplicity and intuitive appeal, Merton's model has many limitations. First, in
the model the firm defaults only at the maturity of the debt, a scenario that may not be
very realistic in real life. Second, another problem of Merton’s model is the restriction of
default time to the maturity of the debt, ruling out the possibility of an early default, no
matter what happens with the firm’s value before the maturity of the debt. If the firm’s
value falls down to minimal levels before the maturity of the debt but it is able to recover
and meet the debt’s payment at maturity, the default would be avoided in Merton’s
approach. Third, Another problem with the Merton model is that the value of the firm, an
input to the valuation formula, is very difficult to determine. Unlike the stock price in the
Black-Scholes-Merton formula for valuing equity options, the current market value of a
firm is not easily observable.

11
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Another limitation of the model is that the usual capital structure of a firm is much more
complicated than a simple zero-coupon bond. Geske (1977, 1979) considers the debt
structure of the firm as a coupon bond, in which each coupon payment is viewed as a
compound option and a possible cause of default. At each coupon payment, the
shareholders have the option either to make the payment to bondholders, obtaining the
right to control the firm until the next coupon, or to not make the payment, in which case
the firm defaults. Geske also extends the model to consider characteristics such as sinking
funds, safety covenants, debt subordination and payout restrictions.

The assumption of a constant and flat term structure of interest rates is other major
criticism the model has received. Jones et al. (1984) suggest that “there exists evidence
that introducing stochastic interest rates, as well as taxes, would improve the model’s
performance.” Stochastic interest rates allow to introduce correlation between the firm’s
asset value and the short rate, and have been considered, among others, by Ronn and
Verma (1986), Kim, Ramaswamy and Sundaresan (1993), Nielsen etal. (1993), Longstaff
and Schwartz (1995), Briys and de Varenne (1997) and Sad-Requejo and Santa Clara
(1997).

Another characteristic of Merton’s model, which will also be present in some of the First
Passage Models (FPM), is the predictability of default. Since the firm’s asset value is
modelled as a geometric Brownian motion and default can only happen at the maturity of
the debt, it can be predicted with increasing precision as the maturity of the debt comes
near. As a result, in this approach default does not come as a surprise, which makes the
models generate very low short-term credit spreads’.

2.2 First passage model.

First passage model were introduced by Black & Cox (1976) extending the Merton model
to the case when the firm may default at any time, not only at the maturity date of the
debt. They also assume that the firm’s shareholders receive a continuous dividend
payment, proportional to the current value of the firm. Consequently as in section 2.1, the
SDE which governs the dynamics of the firm’s value takes the following form, under the
risk neutral probability measure P?,

dVv, =V, ((r —k)dt + odW, ) (10)

Where k > 0 represents the payout ratio (continuous dividend payment), o >0and r
represent constant volatility and constant short term interest rate respectively.

Safety covenant in the firm’s debt prospectus give the bondholders the right to force the
firm to bankruptcy if the firm is doing poorly according to a set standard. The standard

" See Jones et al. (1984) and Franks and Torous (1989).

8 The drift term in equation 1 is now adjusted to dividend payout. In this section, some of the notations
introduced in previous sections are changed but their interpretation still remain the same.

12
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for a poor performance is set in Black and Cox in terms of a time-dependent deterministic
barrier:

v(t)=Ke7" D te[0,T), (11)

With some constant K. when the value of the firm crosses this lower threshold the
bondholders takeover the firm. Otherwise default takes place at maturity of debt
depending on whether or not V; > L, where L represents (see footnote 7) the face value

of the firm’s debt.

v(t) for t <T,
V, =
“lL for t=T.

The default time z is the first moment in the interval [0, T] when the firm’s value V, falls
below the time varying level v, ; otherwise the default event does not occur at all. The
default time 7 can be defined as

r=inf{te[0,T]:V, <v}

Formally, we deal with the defaultable contingent claim (X,Z, X, 7) which settles at time
T; where
X=L, Z; ::BZVt’ X :ﬂlvT'

The random variable X represents the firms liabilities to be redeemed at time T (promised
claim). If default does not occur prior to or at time T, the promised claim X is paid in full
at time T. otherwise either:

0] default occurs at time t < T, and the holder of the defaultable claim
receives the recovery payoff Z, at time t, or:

(i)  default occurs at the debt maturity T, and the recovery payoff X is
received by the claimholder at time T.

The recovery process Z is assumed to be proportional to the firm’s value process:
Z, =BV, for some constant g,. Similarly, the recovery payoff at maturity equals

X = BV, for some constant S,. The coefficient 3 and f3,are constant and represent the

bankruptcy costs. The default time 7 =7 A7 where 7is the passage time of the firm’s
value process V to the deterministic barrier Vv :

r=inf{te[0,T]: V, <V(t)}=inf{t [0, T]: V, <V(t)}
7 is the Merton’s default time:

13



Credit Risk Models and the Valuation of Credit Default Swap Contracts

7 =Tl iy + oy

Assuming that for any t [0, T) we have V(t) < LB(t,T), where B(t, T) is the price of
defaultable zero coupon bond at time t with a maturity of T.

Ke7®™ < Le ™Y = LB(t, T).

Thus the payoff to the bondholder at the default time z never exceeds the value of debt
discounted at the risk-free rate. At time t < T, the value of a defaultable zero-coupon
bond with face value of L and maturity T, denoted by D(t, T), admits the following
probabilistic representation, {r >t} and ={7 > t},

D(t,T) = EP(Le‘r(T‘”l{;ZT,VTZL} IF,) no default

+ Ep(,BlvTe‘r(T“)l{?ZTvvﬁL} | Ft) defaultat T

+Ep(B,KV, e 7T e |F,) defaultat t<z <T (12)

After evaluating the above expectations, Bingham and Kiesel show a closed-form
solution for the value of a defaultable zero-coupon bond as a down-and-out barrier
option®. From this model, one can then infer the default probability from time t to T:

2
Ple<T|c>T]= N(h)+exp| 2| r—2¥ |In K iz N(h,), (14)
2 V, oy
Where
K oy
h, = , (15)
oyVT —t
h, =h, — o, T -1, (16)

The first passage model have been extended to account for stochastic interest rates,
bankruptcy costs, taxed, debt subordination, strategic default, time dependent and
stochastic default barrier, jumps in the asset value process, etc. These extensions may
take into account several important market related factors but these improvements adds
significant complexity to the model. See Bielecki and Rutrkowski (2003) for more in-
depth analysis. Further discussion on calibration of the first passage model and
application to credit default swap market price quotes, see; Damiano Brigo and Marco

% Interested readers should refer to Bingham N.H., and Kiesel, Rudiger “Risk-Neutral Valuation: Pricing
and hedging of financial derivatives” Spring Finance, 2" Edition.

14
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Tarenghi (2005) “credit default swap calibration and counter party risk valuation with a
scenario based first passage model” Working paper.

2.2.1 Other Structural Models
2.2.2 The Kim, Ramaswamy and Sundaresan 1993 Model

Kim, Ramaswamy and Sundaresan (1993) used simpler default boundary but more
realistic stochastic interest rate process the Black-Cox 1976 model. Default is triggered if
the asset value drops below an exogenous constant w. The interest rate process follows
the risk-neutral Cox-Ingersoll-Ross Model:

dr = a(b—r)dt+o,,/r dW, (17)

Where r is the interest rate, a is mean reversion factor and b is long term average of r,
sigma is the volatility of r and W is Weiner process. This model has the convenient
property that the interest cannot become negative.

2.2.3 The Longstaff-Schwartz 1995 Model

Longstaff and Schwartz suggest a first-passage model with exogenous and constant
default boundary K and an exogenous and constant recovery rate w. For the interest rate
process, Longstaff and Schwartz use the well-known Vasicek model:

dr = a(b - r)dt+o,7dW, (18)

Where nis an exogenous constant and all the other parameters are the same as in the

Cox-Ingersoll-Ross Model. One of the key findings of Longstaff and Schwartz model is
that the long term average of the interest rate can be negative (b < 0). This implies that
the credit spreads decrease when the risk-free treasury rate increases. This seems
counterintuitive but can be explained by the fact that a higher interest rate implies higher
growth rate of the asset value V and as a consequence the probability of default is lower,
and with it the credit spread.

15
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2.3.  Empirical tests from structural models

Hull, Nelken and White (2203) tested whether five year credit spreads implied from their
implementation of Merton’s model and the traditional implementation are consistent with
market quoted credit default swaps (CDS) premiums. There are number of reasons for the
difference between the credit spreads implied from Merton’s model and the market
observed credit default swaps spreads. According to Hull, Nelken and White (2203),
Merton’s model is not a perfect representation of market practise because firm’s do not
usually issue only zero-coupon debt. Credit default swap spreads are also likely to be
slightly different from the bond yield spreads for some of the reasons listed in section 5.4.

Figure 2 3 Historical 5 year CDS spread vs Credit spread for France Tel. (2003-2005)

250
200
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0

Source: Bloomberg LP. July 2005

The credit spread backed out from Merton’s model is the spread between the yield on
zero-coupon bonds while the credit default swap spreads are based on spread between the
yields on par yield bonds. The authors also suggest that there may be other factors other
than those suggested by Merton’s model may affect the CDS spreads. This is similar to
the conclusion drawn from the implementation of the reduced-form models. These factors
will be discussed briefly (see section 5.4).

3.1 Reduced-Form Credit Risk Models.

3.1.1 Intensity Based Model.

Reduced form models do not model the evolution of the firm’s value. Instead a specified
jump process models default exogenously. There are two classes of reduced form models.
They are intensity-based models that are concerned with modeling the time of the default
event and credit migration models that are concerned with modeling the migration
between credit ratings. Credit derivative models use intensity-based models, as it is the

16
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modelling of the default event that is important in pricing credit derivative contracts. A
common problem with structural models is that default may occur before the boundary
conditions have been met and at other times it may not occur even when the boundary
conditions have been met. Intensity-based models therefore try to model the likelihood of
default rather than trying to specify the actual time of default. According to Bielecki and
Rutkowski (2002) intensity-based models were first formalized by Jarrow and Turnbull
(1995) and Madan and Unal (1998). In intensity based models the time of default is
modeled as the time of the first jump of a Poisson process with (possibly random)
intensity. The time of default is denoted by z and can be regarded as a stopping time. At
the stopping timez the default indicator function I(t) jumps from zero to one and is
denoted by

1 if <t
' = L= i ot

In general, there could exist more than one stropping time z before time t. Assuming that

7, < 1,,, the collection of stopping times is given by the point process

{r;,ieN}={zr,,75,....}.

The counting process N(t) counts the number of stopping times of the point process that
are before time t, and is given by

N () = Zl{,ig,}.
i=1

In reality there can only be one default event and so the time to default z is the time of the
first jump of N,
r=inf{te R, |N(t) >0},

The probability of N(t) jumping in an infinitesimally small time interval is called the
default intensity function A(t)or the hazard rate. In order to determine the probability of

a default occurring in the time interval [0, T], it is useful to recap a few properties of the
Poisson process. Firstly, by the definition of a Poisson process the probability of n jumps
occurring in the time interval [0, T] is given by;

PIN(t) = N(0) = n]= %( [ ﬂ(s)ds)n exp(— [ /‘L(s)dsj. (19)

Secondly, this implies that the probability of no jumps occurring in the interval [0, T] is
given by

P[N(t)= N(0) = 0] = exp(— [ /I(S)ds) — P(0,1) (20)

and, therefore, P(0, t) is the probability that no default events occur in the interval [0, T]
and is called the survival probability. The probability that a default event occurs in the

17



Credit Risk Models and the Valuation of Credit Default Swap Contracts

interval is equal to one minus the probability of surviving. Hence the probability of
default P*" in the interval [0, t] is given by

P (0,T) =1-P(0,t) :1—exp(— LT ﬂ(s)dsj (21)

The intensity approach to modeling credit risk was studied by, among others, Jarrow &
Turnbull (1995), Jarrow et al. (1997), Duffie et al. (1996), Duffie (1998a), Lando
(1998a), Duffie and Singleton (1999), Elliot et al. (2000), Schonbucher (2000a, 2000b).

3.1.2 Jarrow and Turnbull (1995) — discrete approach.

Jarrow & Turnbull use the risk-free rate as numeraire, they build a discrete lattice for the
default-free term structure as well as for defaultable one and show that, under this
numeraire, they can obtain unique risk-neutral or martingale probabilities such that the
value of defaultable bond can be expressed as a discount expectation under the risk-
neutral measure. In this section we drive a simplified mathematical formulation of the
default probability with no recovery rate using one period discrete time.

Define:
y(T): Yield on a T-year corporate zero-coupon bond

y (T): Yield on a T-year risk-free zero-coupon bond

Q(T): Probability that a corporation will default between time zero and T
or Q; =Q(z <T) risk neutral probability of default before time T
Q(r>T)=(@1-Q;) survival probability

T Default time

P+ Default free zero-coupon bond

P Defaultable zero-coupon bond

The present value of a T-year risk-free zero-coupon with a redemption value of 100 is

100e ™Y T while the present value of a corporate zero-coupon bond with similar maturity
is 100e ™7 . The expected loss from default is therefore

100e™ ™ - 100e ™" =100[¢Y T —eV(MT]

Using the indicator function, the expected payoff of the defaultable bond can be written
as:

W 100 if 7>T,
=T )0 if r<T.

If we assume that there is no recovery in the event of default, the calculation of Q(T)
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is relatively easy. At maturity of the corporate bond, it will either be worth zero if default
takes place or 100 (par value of the bond) with probabilities of Q(T)or

1—-Q(T)respectively. Lets build a two state binomial tree from period 0 and T, where the

node at t = 0 is the present value of the corporate bond, and nodes at period t = T are the
expected payoff of the bond if default takes place or not. From the tree below, we can
derive the risk-neutral default probabilities between period zero and T.

100[1— Q(T)Je ™Y ™"
1-Q(T)

100e VM7

Q(T) 0
The value of the bond can be calculated as
100e Y™ =100[1-Q(T)Je™"" ™ +[100Q(T)]0
100e Y™ =100[1-Q(T)Je " ™"
100e Y™ =100[e ™" ™" —Q(T)e " M7]

100e™" 100 ™" —Q(T)e "]
100 100

YT _ o=y MT _ YT
e =e Q(T)e
Q(T)e™"™ =g ¥'MT _gy1

Q(T)e‘y*(m ~ Al _e—y(T)T]
eV (T - ey (T

-y MT _ 4-yM7T T-YXY)T
Q) =2 ey*(fﬁ ] o QM= OB o

Probability of Default assuming recovery rate R:

If we use the same notation as before and suppose the expected recovery rate is R, then if
default takes place, the bondholder receives a proportion of R of the bond's no-default
value. If there is no default, the bondholder receives the face value of the bond (100).
Lets set up the same tree again but incorporate recovery rate of R this time.
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100[1— Q(T)Je ™Y ™"
1-Q(T)
100e YT
Q(T)
Q(T)100[R]e™ ™"
We can derive the value of the bond as
100e ™" = 100[1- Q(T)Je ™ ™™+ Q(T)100[RJe™ ™"

Now, let RARMEERY

yMT = B
Then,

100e "= 100[1-Q(T)]e ® + Q(T)100[R]e"®
100e "= 100e ® — Q(T)100e ® + Q(T)100Re ®
100e *= 100e® —Q(T)100e ®[1- R]
Q(T)100e ®[1— R]=100e ® —100e *

100e® —100e ™" _ e ®—e”
100[1-R]e®

Q(T) =

now, substituting A and B for the original values, we have the solution

e_y*(T)T _ e_Y(T)T ]

Q(T) = [1- R]e—y*U)T or
1 ey _—y( )
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Table 1.2
DISC.FACT DISC.FACT DISC.FACT
PRICE COUPON YEAR 1 YEAR 1 YEAR 1
Defaultable Par Bond 1 100 8 0.9259
Defaultable Par Bond 2 100 10 0.8249
Defaultable Par Bond 3 100 12 0.70527
Benchmark Swap Curve Price Coupon 3 4 5
DISC.FACT DISC.FACT DISC.FACT
PRICE COUPON YEAR 1 YEAR 2 YEAR 3
Default Free Bond 1 100 3 0.9709
Default Free Bond 2 100 4 0.9335
Default Free Bond 3 100 5 0.88908
YEAR 1 YEAR 2 YEAR 3
Discount Spreads 0.0449 0.1086 0.18381
Risk Neutral Default Probability 0.09259 0.15032 0.219393

From table 1.2, we drive the risk-neutral default probability for defaultable bond from 1
year to 3 years using par defaultable and risk-free bonds with coupon payments. We use
the following notations to explain the above result':

Define:
SP(T) Discount factor spread for period T
Q(T): Default probability for period T
R: Recovery rate
DF;(T) Benchmark discount factor for period T

The default probabilities for period 1 to 3 are calculated as

QM) = (SP(1)/(1-R)* DF, (1))
Q(2) = (SP(2) - SP(D))/(1-Q@))(1 - R) * DF;(2))
Q) = (SP(3) - SP(2)/(1-QM)1-Q(2)(1-Q(3))A - R)* DF; (3))

Table 1.3
EXPECTED DEFAULT

MATU RISK-FREE CORPORATE BOND LOSS - (% OF NO CUMULATIVE Default

RITY ZERO -RATE ZERO- RATE DEFAULT VALUE) DEFAULT PROBABLTY Probability
1 0.05 0.0525 0.2497% 0.2497% 0.2497%
2 0.05 0.055 0.9950% 0.9950% 0.7453%
3 0.05 0.057 2.0781% 2.0781% 1.0831%
4 0.05 0.0585 3.3428% 3.3428% 1.2647%
5 0.05 0.0595 4.6390% 4.6390% 1.2961%

Default probability can be quantified in terms of default probability density or in terms of
hazard rate. The (risk neutral) hazard rate 7 =7 (1) is defined by

19 The data in table 1.2 and 1.3 are numerical implementation from excel spreadsheet
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y)dt=Q(t <z <t+dt|z>t),

Which is the probability of default between time t and t+dt conditional on no earlier
default. y(t)at is the likelihood of default between time t and time t+dt conditional on

no default between time zero and time t. The default probability density q(t)dt s the
unconditional default probability between times t and time t+dt conditional as seen at

time zero and the relationship between 7(®) and q(t) is:

4(t) = h(e "

Table 1.3 lists the unconditional probabilities of default as seen at time zero. The default
probability for year 5 is computed as 1.2921%. The hazard rate is the default probability
in year 5 given that no default has taken place up to year 4. The probability of no default
prior to year 4 is 1 — 0.0033428 = 0.966572%. The hazard rate for year 4 is therefore
0.012962/0.966572 = 1.3410%

3.2.  Arbitrary deterministic recovery, deterministic interest rates.

If the recovery rate at the random default time zis Z(z), where the function Z = Z(t) is

some deterministic function of time, and also that the risk-free interest rate r(t) depends
deterministically on time. The price of defaultable bond via risk-neutral pricing is then
given by,

P EQ{e_jor(u)du L +e—j0r(u)du z 1. j (24)

To compute this, one needs the probability distribution of the default time 7 . Instead of
working directly with Q(z >T), we use a closely related quantity, the hazard rate which

is specified above.

ydt=Q(t <z <t+dt|z>t),
The relationship between the hazard rate and the cumulative distribution function (cdf) of
7 is described:

Lemma 3.1. For all t > 0, we have that

—I;y(u)du

Q(r>t)=e :
Consequently, the cdf and the pdf of 7 with respect to the probability Q are,

F.(t)=F2(t)=Q(r<t)=1- e‘ﬁﬂwdu
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And
f(0) = 1200) = yye O
Which is the derivative of F_**

Now revisiting the zero-coupon bond price of a defaultable bond with zero recovery but
with deterministic and time dependent interest rate,

AVOff = 1 if z>T,

PYO =10 it r<T.
Then;

Py =e M Q> T) +0Q, -
and

—J;r(u)du+y(u)du

=e
Py (25)

That is, instead of discounting with r(t), we discount with r(t) and y(t). where y(t) is an
instantaneous spread.

If we now assume a deterministic recovery Z(r)at time 7, that is, the amount of
Z(t) recovered should default time happen at t (t = 7) is known beforehand; the quantity
Z(7) is random variable since 7 is a random variable. As before:

POI,jT = EQ(ejlor(U)du 1T>T +e7J.0r(U)du Zz‘ 1TST ] (26)

. (v (w)au . . . . .
The discount factor e fr is pulled out of the expectation sign since r(t) is assumed to
be deterministic. However the second discounting factor is stochastic because of the
random time z and cannot be pulled out of the expectation sign. As specified above the

first discount factor in equation (26) is adjusted,; e_J‘)r(u)dW(u)du and we evaluate the

remaining expression inside the expectation sing with the random component (second
term in equation (27):

EQ[e'L“U’du Z 1. j

We had an expression for the probability of default between (t, t+dt):

1 The proof of this result, see pricing notes for Financial Engineering lecture notes by Professor
Brummelhuis, R. Birkbeck University.
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[y

f2 =Q(t <z <t+dt) = y(t)Q(z > t)dt = y(t)e
EQ[ e_J.Ofr(u)du ZT ftQ }

EQ(eJ.Or(u)du Z. ]/(t)ej.oy(u)du].

The last equation cane be written as;

EQ{ 2(s) 7(s) e—jor(u)du+y(u)du ds}
Then;

PO(?T _ ( e—J.Or(u)du+y(u)du +J-(;I' Z(S) ]/(S) e—jor(u)du+y(u)du de (27)

And the price at time t;

|3th :1T>t( e—jor(u)du+y(u)du +J-OT 2(s) 7(s) e—jor(u)du+y(u)du dS]. (29)

3.2.1 Stochastic recovery, interest rate and hazard rate

In stochastic interest rate environment, and with stochastic recovery Z(z)and hazard rate
7(t)., one has:

P =1,>t{Eq(e_ww“ | ft]+ Eo(fZ(s) 7(9) e NN g 1, ]} @

For more rigorous proof, see Bielecki and Rutkowski (2002) “Credit Risk™” Springer
Verlag.
In case of zero recovery, the last term of the above equation drops out and we are left

with;
Ptij :1T>t{EQ[e—J'Or(u)du+7(u)du | ft]} (30)
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3.2.2 Recovery Protocols

In the real world payoffs of defaulted securities are usually greater then zero. The
recovery rates (given default), denoted by Z(z), is defined as the extent to which the

value of an obligation can be recovered once the obligor has defaulted, i.e. the recovery
rate is a measure for the expected fractional recovery in case of default and such that it
takes any value in the interval [0, T]. The loss rate (given default), is defined as 1 minus
recovery rate.

Fractional Recovery of Par:

It is assumed that there is a compensation in terms of cash (invested in risk-free money
market account) and the recovery rate is expressed as a fraction of par. The model has
been applied, e.g., by Duffie (1998b).

If V represents the claims constant par value and ¢ is the claims recovery rate, then;
Z, =Vo and

Fractional Recovery of treasury:

It is assumed that there is a compensation in terms of (the value of) non-defaultable
bonds, i.e. the value of equivalent treasury bond. Several authors have proposed this
model, e.g., Jarrow & Turnbull (1995), Madan & Unal (1998).

In the even of default, recovery is then given by: Z. =§e_Lr(u)du and the price of a

defaultable bond using this assumption;

Rt :1,>t{EQ(e‘i““)““*””"’“v | ftj+ E{& [ neye ft} (32)

Fractional Recovery of market value:

It is assumed that there is a compensation in terms of equivalent defaultable bonds, which
have not defaulted yet, i.e. the recovery rate is expressed as a fraction of the market value
of the defaulted bond just prior to default. This model was mainly developed by Duffie &
Singleton (1997).

Assume Z_ is a positive fraction of the market value of the bond just prior to default

Z.=6P¢

t,o?

then;
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- Tr(u)du+s(u)du
Py ={Eg[e ft 1, ]} (39

Where s(u) =(1-0,)y,,and 9, is the loss rate and y, is the intensity of default.

4.1  Jarrow, Lando and Turnbull (1997) model — discrete approach.

Jarrow, Lando and Turnbull model is a Markov model for the term structure of credit
spreads based on the earlier Jarrow and Turnbull (1995) paper, but linking the default
process to a discrete state space Markov chain in credit ratings, i.e. the life of the firm is
viewed as a journey through the possible rating states where one of them is an absorbing
state. This model provides great flexibility to calculate the parameters to observable data
and to use it for many purposes: pricing and hedging of bonds with embedded options,
pricing of credit derivatives. The main assumption of this approach is that ratings are an
accepted indicator of a firm’s creditworthiness. Default is exogenous process that does
not require dependence of the underlying asset of the firm. The advantage of such
methods against the structural models introduced above is that we can restrict the
calibration to the available observables; there is no particular economic requires. Here are
a list of all the ingredients for this model:

Forward rates are defined in discrete time as

f(t,T) = —|n(M}

p(t.T)

Under this construction, the instantaneous interest rate r(t) is equivalent to f(t, T).
The money market account value is similarly given by

B(t) = exp(i r(i)}

t=0

Under the assumption of complete arbitrage-free markets, we have the following

relationship:

And the price of defaultable bond taking into account the default likelihood is they given
by:

RY = E(&(ﬂ,g . )j- (34)
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if default takes place, the payoff is assumed to be fractional recovery of treasury as
specified by Jarrow and Turnbull.*? Since the default free term structure and the default
time are assumed to be independent, then;

Pth = E(&ja(dlrsT +1r>T)
' B(T)

= p(t, T)1-6)Q (z >T)), (35)

Where Q,(z >T)is the probability that the firm will not default before the maturity

(survival probability).

The contribution of Jarrow et al. (1997) articulates around the specification of the
bankruptcy process as the first hitting time of a time-homogenous Markov chain. This
Markov chain is modelled on a finite state space S consisting in the credit rating classes
{1,....... ,K}, where the K-1 class is the lower credit rating class, while class K is the
absorbing state representing the bankruptcy state. This Markov chain is specified by KxK
transition matrix:

Qi Qi - Oux
Q =| Qy 0y .- ok | (36)

Ok1n Okerz o+ Oiaax
0 0 o1

Where all transition probabilities are positive and =q; = z.lj(:.lqija Vi.
i#]

Each of the g probabilities represent the probability of getting from class i to class j in

one period of time. The last line in equation (36) represents the probabilities attached to
the absorbing state: the probability of leaving this state is always null and the probability
of staying in this state in 1. Once a firm is in default, it will stay in default. Estimates of
these transition probabilities can be found in the reports of credit rating agencies such as
Moody’s or Standard and Poor.

12 See recovery protocols above to derive the payoff.
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Table 1.4 Credit rating transition matrix

AAA AA A BEBE BB B cCC D

AAAN 94,328 5.015 0.551 0.062 0.040 0.004 0.001 0.0002
AA 0.516 92.337 6410 0.569 0.089 0.062 0.013 0.004 8
A 0,084 1.924 92,442 4919 0.436 0.174 0.014 0.0082
BBEB 0.040 0.265 4378 89.990 4.376 0.747 0.090 0.1148
BB 0.027 0.091 0.607 5.439 84,497 B.015 0.766 0.5581
B 0.004 0.080 0273 0.458 4.284 85.367 5.192 4.3420
cCcC 0.082 0011 0.350 0.536 1.131 T.358 50.278 40.255
D 0 0 0 0 0 0 0 100

Source: Moody’s 2001

From table 1.4, q; is the historical (“real-world™) probability of moving from credit rating

class i to class j in one year as stated above. As mentioned by Jarrow et al., nonzero
probabilities tend to concentrate on the diagonal for a 1-year transition matrix since a
movement of more than one rating class is quite improbable.

Following from equation (36), the transition matrix under the equivalent martingale*®
measure can be written as:

qy, (tt+1) Oy, (t,t+1) ... Oy (t,t+1)

Qi =| Uu(t,t+1) O, (Lt+1) ... 0, (t,t+1) (37)

QoG+ g, (Gt+D) o gy, (G E+D)
0 0o . 1

Where
q; (Lt+1) >0, Vi, j, i#jand q;(t,t+1)=1->j1q; (t,t+1).
i)

Additionally
q; (t,t+1) >0, iff g; >0 for 0<t<7-1.

In the Jarrow and Turnbull (1995) model, default probabilities and credit derivative prices
were derived on the basis of illiquid bond prices. However, the Jarrow, Lando, and

13 For detailed introduction on Martingale representation theorem, Bjork, T. “Arbitrage theory in
continuous time.” (1989) oxford university press.
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Turnbull (1997) model replaced bond prices as the main input and apply historical
transition probabilities as the basis for their analysis. Today, many investment banks and
insurance companies apply the 1997 model and its extensions to price and hedge credit
derivatives. Some of the short comings of this model is that asset-liability structure of a
company, is not part of the analysis (this may be argued to be the ultimate economic
reason of default). Also, interest rate process and bankruptcy process are assumed to be
independent. Jarrow, Lando and Turnbull also assume that bonds in the same credit class
have the same yield spread. Longstaff and Schwartz (1995) pointed out that this was not
necessarily the case. Rating are also done infrequent and may not be recent enough to
reflect current counter party risk.

Figure 3.1 Credit Spread Term Structure

Martingale Default Probabilities
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Figure 3.1 shows the default probabilities for various credit rating classes calculated in
excel spreadsheet. See appendix A for spreadsheet used to generate one period transition
matrix.

In the following section, Duffie and Singleton model will be used to drive a theoretical

and arbitrage free credit default swap (CDS) premium. We will also implement other
numerical models using binomial tree to drive non-arbitrage CDS prices.
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5.1 Pricing Credit Default Swaps

Credit default swaps (CDS) are a form of insurance against possible default of a reference
issuer, or a bond issued by this issuer. The protection seller promises to compensate the
protection buyer in the event of default of the reference issuer. In return, the protection
buyer pays a constant periodic payment, which terminates at the earlier of the CDS
maturity or a default event.

There are number of variations on the standard credit default swap. In binary credit
default swap, the payoff in the event of default is a specific dollar amount. In a basket
credit default swap, a group of reference entities are specified and there is a payoff when
the first of these reference entities defaults. In a contingent credit default swap, the payoff
requires both a credit event and additional trigger. The traditional trigger might be a
credit event with respect to another reference entity or a specified movement in some
market variable.

Several papers have addressed the theoretical pricing of credit derivatives during the last
few years. Longstaff Schwartz (1995) present the pricing of credit spread options based
on exogenous mean-reverting process for credit spreads. Duffie (1999) presents a simple
argumentation for the replication of as well as a simple reduced form model of the
instrument. In the this section, we introduce a reduced-form type pricing model
developed by Hull and White (2000), where they calibrate their model based on the
traded bonds of the underlying on a time series of credit default swap prices on one
underlying. Like most other approaches, their model assumes that there are no counter
party default risk. Default probabilities, interest rates, and recovery rates are independent.
Finally, they also assume that the claim in the event of default is the face value plus
accrued interest. Consider the valuation of a plain vanilla credit default swap with 1$
notional principal. Using the notations below, we proceed to show the reduced-form
pricing model.

Figure 3.2 Payment structure of a CDS before and in the event of default
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Notations

P(0,T) = Price today of a $1 risk-free discount bond maturing at time T
C,(T) = Par risky coupon rate for maturity T, in percent

q(t) =  Default probability density at time t, conditional on no prior default
Q(t) = Cumulative default probability density up to time t

Q(T) = [ a(t)at

R = Recovery rate: fractional amount of bond value recovered on default.
Al (t) = Accrued interest function, based on 1% per annum coupon.

t-t, .t <t<g

0 (-t where i issuchthat t,  <t<t,

Al(t):{

Note: for simplicity of notations, we assume in the following equations that bond coupon
payment dates and premium payment dates coincide.

A Credit Default Swap (CDS) provides protection against default of a reference issuer.
The buyer of the protection pays a premium in the form of regular fixed payments S (%,
annualized) for the duration of the protection period, or up to a default event. The
protection seller will pay in the event of default of the reference issuer the difference
between par and the post-default value of the bond.

The expected present value of the “premium” leg of the CDS is
m T
S[zjzl{l—Q(t DIPO.L AL + [ q(t)AI(t)P(O,t)dt} (38)

The two terms correspond, respectively, to premium payments (made if default has not
occurred) and payments of accrued premium (if default has occurred). If we assume that
in the event of a future default, the recovered amount is R times par plus accrued
interest, the expected present value of the “protection” leg of the CDS is

LT q(t)[100 — R{100 + Al (t)C, (T)}]P(0, t)dt (39)

The market value of a CDS is the difference between the two legs.

At initiation of a CDS, the premium (the CDS spread) is set to the value S =S (T)

such that the two legs of the CDS are equal, and the CDS has zero initial value. Solving
for the spread:
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JOT q(t)[100 — R{L00 + Al (t)C, (T)}]P(0,t)dt

40
> - PO.E)AL + [ g Al POt 4o

SCDS (T) =

This equation gives the value of a par CDS spread, with the default probability curve
used as an input. Conversely, if we have a curve of par CDS spreads, we can use a
bootstrap procedure to infer the default probability curve.

Note: if we do not want to include accrued interest in the default claim, we set Al (t) =0.

The variable S.,¢(T)is referred to as the credit default swap spread or CDS spread. The
formula at (40) is simple and intuitive for developing an analytical approach for pricing
credit default swaps because of the assumptions used. The spread S (T) is the payment
per year, as a percent of notional principal for newly issued credit default swap contract.
Table 1.5 shows the market value of S.,(T) for a list of reference names. For example

the quoted CDS bid/ask spread for a maturity of 5 years for France Telecommunications
is: 38/44 basis points for bid and ask respectively.

Table 1.5 CDS quotes: Telecoms and Electronics — Banco Bilbao

Telecoms & Elec Rating 1 year 3 year 5 year 10 year

Electronics Moody's S&P bid ask bid ask bid ask bid ask

BRITISH TEL Baal A- T 13 19 29 38 44 69 79
DEUTSCHE TEL AZ A G 12 17 27 31 37 86 66
ELECTROLUX Baal BBB+ 9 15 24 34 43 53 63 T8
FRAMCE TELECOM A3 A- T 13 21 31 38 44 67 T
KPM Baal A 7 13 20 30 35 41 61 71
MMO2 Baa2 BBB 10 16 24 34 42 48 83 93
MOKILA 6 12 11 21 19 29 38 48
OTE A3 BEB+ T 13 19 29 36 42 83 63
PHILIPS Baal A= T 13 16 26 25 35 46 56
PORTUGAL TEL AZ A & 1 16 26 29 35 83 63
SIEMENS Aald M_A 4 10 4 14 18 28 35 45
STM A BBB+ a 11 15 25 28 38 445 58
TDC A/S Baal BEB+ 31 37 44 a4 T2 TG 124 134
TELECOM ITALLA Baa2 BBB+ 9 15 27 37 48 54 80 390
TELEFOMICA A3 A 6 12 15 25 31 36 a4 64
TELEMOR AZ A & 1 14 24 25 31 45 85
TELIA SOMNERA aZ A 5 11 14 24 25 31 45 55
TELSTRA Al At a 11 8 18 19 25 30 40
THOMSOM oA BEB+ T 13 22 32 34 40 845 65
WODAFOMNE A2 A 3 9 12 22 23 29 41 51

Source: Bloomberg LP. July 2005

To implement the above model in order to approximate the quoted market prices, one
need to link the rates observed in the credit protection market and the corporate bond
market via probabilities of default of the issuer. The input used to price the CDS contract
should be selected from a range of market observed yield curves which should include; a
curve of CDS spreads, an issuer (credit-risky) par yield curve, and default probability
curve. The assumptions based on the independence of recovery rates default probabilities
and interest rates may not hold completely in practice since high interest rates may cause
companies to experience financial difficulties and default or administration, and as a
result of this default probabilities would increase. Thus, a positive relation between
interest rates and default probabilities may be associated with high discount rates for the
CDS payoffs, and this would have the effect of reducing the CDS spread. Nevertheless,
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the Hull-White approach presents a neat and intuitive approach that allows for a closed-
form pricing approach for credit default swap, calibrating market data.

Figure 4.1 Historical CDS for selected Telecoms reference names (2003-2005)

Source: Bloomberg LP. July 2005
Reference names: British Tel. Deutsche Tel. France Tel. Nokia, Telefonica, VVodafone, Telenor

As an extension of the above model, Hull and white (2001) investigate the impact of
counterparty default risk on the value of vanilla CDS. They find that this impact is small
when the credit quality correlation between the counterparty and the reference entity is
zero. It increases as the correlation increases and the creditworthiness of the counterparty
declines.

5.3 Relating risky par rates & default probabilities

We assume that if a bond defaults, the amount recovered is a fraction R of the par value
of the bond plus accrued interest. Recovery rates are usually reported as the ratio of the
post-default value of the bond and its par value.

The equation relating the risk-free discount curve P(0,t), the risky par rate C.(T), the
recovery rate R, and the default probability curve Q(t) is

100 = CR(T){Zn:{l—Q(ti)}P(O,ti)Ati + J'OTq(t)AI (t)P(O,t)dt} +100{L-Q(T)}P(0,T)

i=1

+ [ gOR{L00+ Al (©)C, (T)}P(O,t)ct (41)

The first term on the RHS is the sum of all coupons paid assuming that default has not
occurred before their payment times. The second term takes accrued interest into account:
if default occurs in the middle of a coupon payment period, interest accrued on the
coupon is paid. The third term is the bond face value, assuming that the issuer had not
defaulted before maturity. The fourth term sums recovered values (R times par plus
accrued interest) assuming default before maturity of the bond. All future payments are
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discounted using the risk-free discount rates. Since this is a par risky bond, the four RHS
terms sum up to 100.

If the default probability curve is known, we can compute the risky par curve directly. If
the risky par curve is known, we can infer the default probability curve using a bootstrap
procedure.

5.4  CDS model using stochastic interest rate and intensity process

In this section, we present similar closed-form model for valuing credit default swaps
within the reduced-from framework of Duffie (1998), Lando (1998), Duffie and
Singletob (1998), and others. The default intensity is modeled as square-root process and
explicit solution of credit default swap premia is given. Following standard notion, let r,

denote the risk-free rate and A, the intensity of the Poisson process governing default.
Both r, and A4, are stochastic and are assumed to follow independent processes. In the
event of default, the bondholders are assumed to recover a fraction 1—w of the par value

of the bond. The value of risk-free zero-coupon bond P(0,T) with maturity of T is given
by;
.
P(O,T)= E[exp(— L rtdt)} (42)
The risk-neutral dynamics of the intensity process 4, is given by
dA = (- BA)dt + oA dZ (43)

Where «, £,and o are positive constants, and Z, is a standard Brownian motion. These

dynamics allow for both mean reversion and conditional heteroskedasticity in corporate
spreads and guarantee that the intensity process is always nonnegative. Given these
dynamics, the probability that default has not occurred by time T is given by;

.
exp(— L A, dt) (44)
And the density function for the time until default is given by
t
A exp(— J'O A ds)dt (45)

From Duffie (1998), Lando (1998), Duffie and Singleton (1999), the value of corporate
bonds and the premium and the protection leg of credit default swap can be expressed as
expectations under the risk-neutral measure. Letting cdenote the coupon rate of
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defaultable bond, then the price of the bond which is a function of CB(c,w,T)"* can be
expressed as:

P = E[CJ'OT exp(— j; I+ isds)dt} + E[exp(— J‘OT I+ /Ldtﬂ

+ E[(l— W exp(— [r+ zsds]dt}. (46)

The first term in equation (46) represents the present value of the coupon portion of the
bond, the second term represents the present value of the promised principal payment,
and the third term is the present value of the recovery payments in the event of default.
As before, let s denote the premium paid by the buyer of default protection. The present
value of the premium leg of a credit default swap P(s, T) can be expressed as

P(s,T) = E[sjoT exp(— J: r,+ ﬁsdsjdt} (47)

And the value of the protection leg PR(w,T) can be expressed as
PR(w,T) = E[WJ.OT exp(— I; r, + ﬂsdstt} (48)

As before, we solve for s by setting the value of the protection and premium legs equal to
each other. We then have

T t
E[WJ'0 A exp(— J'O I +ﬂsds)dt}

S = (48)

E[J: exp(— jot r, + /Isds)dt}

To provide some intuition about the credit default swap market, Duffie (1990) shows that
premium equals the fixed spread over the risk-free rate that a corporate floating rate note
would need to pay to be able to sell at par. Thus if both a firm and the treasury issued
floating rate notes tied to the risk-free rate, the fixed spread between rates paid by the
floating rate notes would equal the credit default premium s. This result is however not
the case for the yield spread between corporate and treasury fixed rate bonds. Longstaff.
F.A., Mithal S. and Neis E. (2003) apply the closed form solution is equation (48) and fit
the model to the prices of corporate bonds. They solve for the premium implied by the
model. The model implied values of the premia are then compared with the actual market
credit default swap premia.

™ This notation is also similar to previous notion for defaultable bond: Pth
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Longstaff. F.A., Mithal S. and Neis E. (2003) used credit default swap data for 5 year
contract and corresponding bond prices provided by Citigroup for 68 firms for the period
of march 2001 and October 2002. They estimated the dynamics of the intensity process
for each of the firm as well as all the intensity parameters in order to estimate default
swap prices for these firms. Their result showed wide variation in credit default swap
premia, both overtime and across firms. See table 1.6.

Table 1.6 Summary Statistics for the Differences Between Model Implied and Market Credit-Default

Swap Premia. This table reports summary statistics for the differences between the premia implied by the fitted credit
model and market premia for the indicated firms. Differences are expressed in basis points. Averages reported at the
bottom of the table are cross-sectional averages of the indicated summary statistics taken over all firms.

Average Serial

Sector Firm Difference t-Statistic Min. Max. Corr.
Financial AN T1.5 5.2 —254.7 17T1.8 0.83
Bank of America 67.3 31.4 35.2 104.0 091

Bear Stearns H1.0 G40 552 107.0 065

Citigroup 61.4 aTr.6 25.9 0.2 0.583

Countrywide Cr. 54.4 18.8 —18.9 BE.E 057

CIT Group 19.6 2.3 —220.3 a3.1 041

Capital One 1.8 2.0 —HGT.0 153.3 0.37

GE Capital 40.1 15.7 — 3.4 as.T 0.940

Goldman Sachs TOG 407 45.6 111.1 085

Household Fin. 31.1 5.0 —03.2 50.3 066

JP Morgan Chase TG 485.6 404 1021 0.74

MBNA T3.6 15.2 —23.3 122.4 067

Lehman Brothers T3.2 45.8 41.0 103.7 081

Merrill Lynch 59.1 0.6 25.5 857.9 087

Morgan Stanley TH.0 GE.5 45.5 aT.2 080

Bank One 656 45.4 406 a2.6 0.582

Table 1.6™ shows the empirical result from Longstaff. F.A., Mithal S. and Neis E. (2003)
where summary statistics for the difference between the model implied and the market
credit default swap premia are reported. These summary statistics include the average
differences with their associated t-statistics, the minimum and maximum values of the
difference, and the serial correlation of the difference. One of the most striking result
from their investigation is that the average difference or pricing error is positive for all
the firms (68) in the sample. Thus, the premia implied by fitting the model to the market
prices of corporate bonds are all greater on average then the actual credit default swap
premia observed in the market. They show that all of the average differences are highly
statistically significant based on their t-statistics.

1> We show only summary statistics for companies in the financial sector.
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Figure 4.2 Histogram- distribution of average premium differences across firms.
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Fig. 4.2. Distribution of the average difference between the implied and market credit-default swap premia. For each
firm in the sample, the average difference is calculated as the time-series average of the difference between the implied
credit-default swap premium and the market credit-default swap premium. The plot shows a cross-sectional distribution
of an average difference for 68 firms in the sample. The cross-sectional mean of the average difference is 60.8 basis
points. The standard deviation of the average difference is 21.2 basis points.

These result strongly suggest that the cost of credit protection in the credit default swap
market is significantly less than the cost implied from the corporate bond prices. Because
of the cross sectional variations in the differences between implied and market premia, it
is possible that other factors may be effecting the cost of protection.

In this section, we list a number of suggested factors that may contribute to the significant
differences between market observed CDS prices and modeled CDS prices.

Differences in Taxation:

The differences in taxation between corporates and treasuries might explain a significant
portion of the yield spread. Credit swap premium should reflect only the actual risk of
default on the underlying bonds. Thus, if the spread between corporates and treasuries are
partly tax related and partly default related, then this portion of the spread should not be
incorporated into the credit default swap premium.

Differences in liquidity:
If corporate bonds are less liquid then treasury bonds, then corporate bond spreads could
also include liquidity spread. Thus, the liquidity of corporate bonds should not affect the

cost of credit protection in the CDS market. This implies that if corporate bond yields
include liquidity component, then the credit default swap premia should be less then the
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premia implied from corporate bonds. This is consistent with the result presented in table
1.6.

Modeling error:
Another possible factor due to premia differences may be simply model error. That is,
some key feature of the data is being missed by the model used to estimate the implied

credit default swap premium from corporate bond prices.

Figure 4.4.1 Market vs implied CDS (Enron).
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Fig. 4.4.1 Enron’s market credit-default swap premium, implied credit-default swap premium, and stock price. Figure
4.4.1 shows Enron’s market and implied credit-default swap premia between December 5, 2000 and October 22, 2001.
The dates on the figure 4.4.1 and 4.4.2 shows chronology of some of the events leading up to Enron’s bankruptcy. After
rating downgrade of from credit rating class B to CC by S&P’s from November 28, 2001 and November 30, 2001.
Enron Filed for bankruptcy and defaulted on its debt on December 2, 2001. Near the beginning of 2001, the model and
the market price were close to each other. During the middle of the year, however, the implied premium is
approximately 50 basis points higher than the market premium. On average the two premia are quite close.

Figure 4.4.2 Historical stock prices (Enron).
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Figure 4.4.2 shows Enron’s stock price between December 5, 2000 and December 7, 2001. The arrows on each plot

indicate the dates of important corporate events. Enron filed for bankruptcy on December 2 2001.
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Asset swap spread:

Market practitioners relate the cost of credit protection to the spread between corporate
yields and swap yields. The credit default swap premium is related to the asset swap
spreads, and the difference between the CDS premium and the asset swap spread is
referred to as the basis™.

Figure 4.5 Historical mid Asset swap spread vs CDS spread (2003-2005)
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Using Bloomberg data for a single reference entity 5 year credit default swap premium,
and a mid asset swap spread from the reference obligation of the credit default swap
contract, figure 4.5 show significant difference in basis point. This result is also
consistent with the result reported by Longstaff. F.A., Mithal S. and Neis E. (2003).

Longstaff. F.A., Mithal S. and Neis E. (2003) used the swap curve as a benchmark curve
to determine the discount function. From their result, the use of the swap curve in
estimating the discount function could not account for the large cross-sectional
differences across firms. However, the average differences between implied and market
premia across all firms was only 3.9 basis point according to the authors.

Default risk from counter party:

Another reason that could explain why the market observed CDS premia are lower than
the implied CDS is that the firm selling credit protection might enter financial distress
itself. The price of the premium from the buyers point of view should not be worth as
much if there is a default correlation between the protection seller and the reference
entity.

18 for more in-depth analysis of asset swap pricing and basis arbitrage, see; Frank J. Fabozzi, Moorad
Choudhry “Credit derivatives; Instruments, application and pricing.”
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There are several other factors that may contribute to the differences between model
implied CDS premiums and market quoted CDS premiums. Factors such as the cost of
shorting corporate bonds could be considered. It is however beyond the scope of this
paper to examine all of these factors. It is possible that further improvements of the
implemented models or alternative models in the future as a result of further research
may reduce the CDS premium variations observed in most empirical work.

6.1 Kettunen, Ksendzovsky, and Meissner (KKM) model (2003)

In this section, we use an alternative model to price CDS using KKM model*’. Kettunen,
Ksendzovsky, and Meissner derive the default swap premium with a combination of two
easily implementable discrete binomial trees. One tree represents the default swap
premium, and the other the default swap payoff incase of default.

1. KKM model excluding counterparty default risk

Notations:

A o risk-neutral probability of default of reference entity r during (t, t+1)
s,:  default swap premium to be paid at time t

N: notional

7, . time between 0 and time t, expressed in years

Az, . time between t and t+1, expressed in years

RR: recovery rate
a: accrued interest from last coupon date until the default date
r . the risk-free rate for the period (0, t+1)

We use a simple binomial tree where the premium is paid at the end of default period,
where t represents the CDS payment dates.

Figure 6.1 Discrete time binomial model

Time 0 1 2

7 See Kettunen, J., D. Ksendzvosky, and G.Meissner, “pricing default swaps including reference asset-
counterparty default correlation,” Hawaii Pacific University working paper, 2003.
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The present value of the default swap premium payments from figure 6.1 is given by:

s, N + (L= 45 )5, N o+ {1— a0 ars,N + (-4 Js,NJe ™ (49)

Cancelling several terms in (49) and generalizing for T period, the present value of the
default swap premium is given by:

T t-2
s,Ne ™ + Z{slNe‘“"lH A-A )} (50)
t=2 u=0

The above tree can be extended to more default period and the pricing formula will
become more complicated. For example using 4 period tree, the present value of the swap
premium can be written as:

|25s,NAz, +(1— 45 )s,NAz, ™"

+ {12 | Ars,NAT + (1- s, NAT, fle

- A Nas + -2 RNae

+{1- 2 - a) (- A)| s, NAT + (L— A )s,NAz, e (51)

Setting the swap premium s constant in time, i.e. s, =S, =S5, ...., and canceling several
terms in (51), we get for time T periods:

T t-2
s,;NAz,e ™" + Z[SINArtle‘“‘” [Ta- /1;)}. (52)
t=2 u=0

Incorporating the payoff from the default swap seller to the protection buyer in event of
default as usual, this is defined again as: N(1— RR — RRa)where all the parameters are as

specified above. The present value of the expected payoff is given by:

2,N(1-RR - RRa)e ™" + (1-4,)4N(1-RR—RRa)e
+(@1-24,)A-2)A,N(1-RR-RRa)e ... (53)
Generalizing (53), we get the present value of the expected payoff:
T t-2
A,N(1—RR - RRa)e " + Z[N (1-RR-RRa)4_e " [J@- 4 )} (54)
t=2

u=0

Combining equation (52), (53), and (54), the present value of the default swap from the
buyers viewpoint is derived:
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T t-2
A,N(1-RR-RRa)e ™" + Z{N (1-RR-RRa)4_e " [ [@-4] )}
t=2

u=0

T -2
—SNAz,e ™ + 2[51NA T e H (1- 4 )} (55)
t=2 u=0

Setting (55) to zero and solving for s (credit default swap premium), we get:

T t-2
,N(L-RR - RRa)e ™™ + Z{N (1-RR—-RRa)A_e [ J@-4] )}
(56)
NAz,e ™" + Z[slNArt_le“l [1a-4 )}

t=2 u=0

As before, s represents the fair or the mid market default swap premium implied from the
above model since it gives the swap a zero value at the interception of the contract. In
other words, this is neither in-the-money nor out-of-the money from both seller and
buyers viewpoint.

We apply the above equation to compute the default swap premium using the following
data: Given a notional value of $ 1,000,000, recovery rate of 40% and CDS contract with
maturity of 1 year with annual payment. Default probability of 10% and 30 percent for
period one and two. Accrued interest of 1% and 4% for both periods respectively. we
plug these data into formula (56) using excel. The computed CDS premium is 22.67%.
Appendix B shows a print out of the result from excel spreadsheet.

7.1  Structural versus Reduced-form models

Jarrow and Protter (2004) compared structural versus reduced form credit risk models
from an information based perspective. According to the authors, difference between
these two model types can be characterized in terms of the information assumed known
by the modeler. Structural models assume that the modeler has the same information set
as the firm’s manager—complete knowledge of all the firm’s assets and liabilities. In
most situations, this knowledge leads to a predictable default time. In contrast, reduced
form models assume that the modeler has the same information set as the market—
incomplete knowledge of the firm’s condition. In most cases, this imperfect knowledge
leads to an inaccessible default time. Jarrow and Potter argue that the key distinction
between structural and reduced form models is not whether the default time is predictable
or inaccessible, but whether the information set is observed by the market or not.

If one is interested in pricing a firm’s risky debt or related credit derivatives, then reduced
form models are the preferred approach. There is consensus in the credit risk literature
that the market does not observe the firm’s asset value continuously in time. This implies,
that the simple form of structural models illustrated above does not apply. In contrast,
reduced form models have been constructed, purposefully, to be based on the information
available to the market.
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8.1 Conclusion

This paper introduces the existing credit risk models and their applications to price the
premiums in credit default swaps (CDS) contract. Both structural and reduced-form
models such as Merton’s model and extensions as well as intensity based models are
introduced. we examined the difference between model generated CDS prices using both
Merton’s model and intensity based model such as the model proposed by Duffie and
Singleton. according to Longstaff. F.A., Mithal S. and Neis E. (2003) , there is a clear
evidence that the implied cost of credit protection is significantly higher in the corporate
bond market for all the firms they used in their sample. Possible explanations for the
higher cost of credit protection implied by corporate bonds could be due to number of
factors including tax issues, liquidity issues, asset pricing, the cost of shorting corporate
bonds, or model error due to missing out relevant data.
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z Jarrow-Lando-Turnbull 1997 Credit Risk Model
Input cells on green background. Press ‘calculate’ on cell ¢38 to derive the martingale default probabilities in figure 1
= Martingale Default Probabilities

o 1.0000 -
| 0.9000 A
_n | Average l-year fransition probabilities —+ AAA
e Bond Rating Class 0.8000 = AA
o AAM AA A BEB BB B ccc D NR 0.7000 4 A
| AAA 0.8546 0.0845 0.0077 0.001% 00029 0.0100 0.0100 0.0100 0.0084 1.0000 0.6000 4 BBB
= | AA 0.0084 0.8787 0.072% 00097 00028 0.0028 0.0100 0.0100 0.0047 1.0000 05000 4 —~ BB
" A 0.0009 0.0282 0.8605 00628 00098 0.0044 0.0100 0.0100 00134 1.0000 -~ B
[ BBB 00006 0.0041 00620 07968 00609 00151 00017 00043 00545 10000 0-4000 1 oo
| BB 0.0004 00020 00071 00649 07012 00942 00115 0.0218 00969 1.0000 0.3000
e B 0.0000 00017 0.0027 0.0058 0.0451 07196 0.0380 0.0598 0.1273 1.0000 g 2000 4
o | ccc 0.0000 00000 0.0102 00102 00179 0.0665 05729 02046 0.1177 1.0000 01000 4

o

" 0.0000 e Se=——— ‘
= | Zero-coupon bond price (not used in the Martingale Default Probability Derivation) 0 3 10 15 20 25 30 35
e | Year Year
| 1 2 3 4 5 6 7 8 9 10 15 20 25 30
s | AAA 0969215 925014 87.1225 812513 762492 70.8646 65.1637 60.8654 57.0747 52.7439 493630 459904 42.6181 39.2471
| AA 96.9064 92.0011 86.7370 80.9128 75.9209 70.5794 64.923% 60.6421 56.8693 52.5555 49.1870 45.8266 42.4665 39.1076
| A 96.4118 91.5915 86.1866 80.2087 752303 69.9297 63.9945 58.7643 55.9816 51.7065 48.3897 45.0821 41.7748 38.4689
s | BBB 953560 90.3754 84.8356 78.7447 73.7927 68.6292 62.1318 58.0049 542150 50.0835 46.8659 43.6595 40.4533 37.2490
s BB 93.2040 87.6054 81.0866 73.9117 68.9893 63.735% 57.2526 53.4365 49.8739 46.1042 43.1381 40.1842 37.2303 34.2787
o | B 94.8510 86.2495 753329 63.6358 58.5354 51.8234 47.3623 44.2297 414798 384922 36.0173 33.5518 31.0865 28.6229
a2 CCC  92.1060 82.3102 72.5022 56.5784 49.6692 43.8038 40.6174 37.9481 35.7206 33.3455 31.2104 29.0795 26.9488 24.8187

_»| Risk spreads s for risky bonds

| Year

= | prem de 1 2 3 4 5 6 7 8 9 10 15 20 25 30
n | AAA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 AA 0.0010 0.0010 00010 0.0010 00010 00010 0.0010 0.0010 0.0010 00010 0.0010 0.0010 0.0010 0.0010 0.0010
w0 | A 0.0020 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030
o | BBB  0.0025 0.0055 00055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 00055 0.0055 0.0035
e | BB 0.0030 0.0085 0.0085 0.0085 0.0085 00085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085
_a | B 00040 0.0125 00125 00125 00125 00125 0.0125 0.0125 0.0125 00125 00125 0.0125 00125 0.0125 0.0125
| CCC 00050 00175 00175 0.0175 00175 00175 00175 0.0175 0.0175 00175 00175 0.0175 00175 0.0175 0.0175

- yearly premium delta (¢ 0.0000

The result on the spreads are generated using VBA code which we omit from this text due to the length of
the code.

Appendix B
1B\C|D|E\F\G|H|IJ\KILIMIN\
2

"3 | Equation 56

4| Input:

5 | time 1 time 2

6_ time 1= 0.5 vear Numerator 58,128 148,497 206,626 5=

77| time2= 1 year Denominator 487,655 423,794 911,449

B N= 1000000

5| RR= 40.00% = 1192%]  3504%| 46.96%

50| Lembda(t0) 10.00% 02348

1| Lembda(tl) 30.00%

2| 5.00% 0.145238

J3] 6.00% T 2

4] 2003 100% A;N({ -RR , -RR ) ™" + 3 [N(I - RR, ~RR @), Al e ™[] (1-1})]
5] al 400% puc e

T | deltathau0 5 050 T 2

171 NAt, e™ + > [N At e ™[ (1-1L)]

18 t=2 u=0
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Appendix C*®
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